

AUDIO WEAVER

MODULE DEVELOPERS GUIDE

May 2018

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 2 of 147 (v01)

Copyright Information

© 2008-2018 DSP Concepts, Inc., ALL RIGHTS RESERVED. This document may not be

reproduced in any form without prior, express written consent from DSP Concepts, Inc.

Printed in the USA.

Disclaimer

DSP Concepts, Inc reserves the right to change this product without prior notice. Information

furnished by DSP Concepts is believed to be accurate and reliable. However, no responsibility is

assumed by DSP Concepts for its use; nor for any infringement of patents or other rights of third

parties which may result from its use. No license is granted by implication or otherwise under the

patent rights of DSP Concepts, Inc.

Change Log

Version Date Author Description

01 2018.July.09 MW Updated requirements, added document versioning

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 3 of 147 (v01)

TABLE OF CONTENTS

1. Overview ... 6

1.1. Requirements .. 6

1.2. Overall Development Environment .. 7

2. Scaler Smoothed Module Example ... 9

2.1. Module M-files ... 9

2.2. Audio Module Instance Structure ... 10

2.3. Audio Module Source Code (.c and .h files) .. 12

2.4. Audio Module Schema File .. 13

2.5. Generating Module Code .. 14

2.6. Template Substitution ... 16

2.7. Building the Audio Module DLL ... 19

2.8. Summary of Steps Involved in Writing an Audio Module ... 19

2.9. Scaler Smoothed Example Source Files ... 20

3. MATLAB Function Reference ... 32

3.1. @awe_variable.. 32

3.2. @awe_module .. 37

3.3. @awe_subsystem .. 49

3.4. new_pin_type.m .. 53

3.5. add_pin.m.. 56

3.6. add_variable.m .. 57

3.7. add_array.m .. 58

3.8. add_pointer.m ... 60

3.9. add_module.m ... 60

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 4 of 147 (v01)

3.10. connect.m .. 61

3.11. get_variable.m and set_variable.m ... 64

3.12. Module for AWE Designer ... 65

4. C Run-Time Environment... 68

4.1. Data types and Structure Definitions .. 68

4.2. Class Object and Constructor Functions ... 73

4.3. Memory Allocation using awe_fwMalloc() .. 79

4.4. Module Function Details... 80

5. Generating Module Libraries .. 87

5.1. awe_generate_library.m .. 87

5.2. Code Markers and Template Substitution... 95

5.3. Fine Tuning Code Generation ... 101

5.4. unique_classes.m .. 102

5.5. awe_generate_module.m .. 103

6. Generating Documentation ... 104

6.1. awe_help ... 104

6.2. awe_generate_doc.m ... 105

6.3. Selecting the Documentation Format .. 106

6.4. Guidelines for Documenting Modules and Subsystems ... 106

6.5. Hilbert Subsystem Example .. 107

6.6. Adding Equations to Documentation .. 110

7. The Examples Module Library ... 111

7.1. Scaler Module ... 111

7.2. Peak Hold Module .. 114

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 5 of 147 (v01)

7.3. Fader module .. 120

7.4. Downsampler Module ... 124

7.5. Look Ahead Limiter Module .. 127

8. Building Audio Module DLLs .. 131

8.1. Building ExamplesDLL.dll ... 131

8.2. Cloning the Examples Library .. 133

9. VectorLib and ModuleHelperLib ... 136

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 6 of 147 (v01)

1. Overview

This Developers Guide describes creating custom audio modules for Audio Weaver. It is a

companion to the Audio Weaver Matlab API which focuses on developing audio systems using

MATLAB scripts. This document is intended for algorithm developers creating custom audio

modules.

This guide assumes that you've read through the Audio Weaver Matlab API and can develop

audio systems using MATLAB scripts. This is particularly important for module developers

since many of the key concepts – pins, variables, modules and system objects - will be built upon

here. Modules are developed using a combination C or Assembly code and MATLAB scripts,

and understanding the MATLAB scripts described in the Matlab API guide is critical. This

Developers Guide is suitable for Audio Weaver Designer and Audio Weaver Developer. With

Audio Weaver Designer, you will be limited to developing custom audio modules on the PC.

Audio Weaver Developer gives you the added flexibility of creating custom audio modules for

an embedded processor. We use the SHARC processor from Analog Devices in many of our

examples.

If you are creating a custom hardware target for use with Audio Weaver, you should refer to the

Audio Weaver Platform Developers Guide.

1.1. Requirements

Developing custom audio modules for the native PC target requires the following:

• Valid Audio Weaver Designer – Pro Edition License

• Valid Custom Module Creator License

• MATLAB 2015b (64-bit) or later

• VisualStudio 2010

The audio module code is compiled and packaged into an audio module Dynamic Link Library

(DLL). The DLL is read by the Server when it launches and makes the audio modules in the

DLL available to the Server.

To develop custom audio modules for an embedded target you'll need the software items listed

above together with development tools for the embedded target. You first create an audio

module DLL using VisualStudio; this describes the audio module to the Server. You then

rebuild the target executable and link in your custom modules using your embedded

development tools. The embedded development tools to use depend upon the details of your

target processor.

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 7 of 147 (v01)

1.2. Overall Development Environment

The Audio Weaver environment utilizes MATLAB, a PC-based Server, a hardware target, and

development tools for the hardware target, as shown in Figure 1. Much of the design is

orchestrated by MATLAB including describing modules, generating code, and generating

documentation.

Steps 1 through 9 shown above the dark line in Figure 1 are for creating custom audio module

DLLs on the PC. The main output is an audio module DLL shown as item 9. The DLL

encapsulates all of the information required by the Server to natively execute an audio module.

This includes the module C functions – Constructor, Set, Get, Process, and Bypass – and schema

information describing the module instance data structure to the Server. A DLL may contain one

or more audio modules.

The custom module DLL is copied into the same directory as the AWE_Server executable.

When the Server is launched, it loads all of the audio module DLLs contained in the executable

directory and the new modules are then available for use.

Items 10 through 15 shown below the dark line in Figure 1 are associated with creating custom

audio modules on an embedded target. You first create the custom audio module DLL on the PC

and then compile the generated module source files (item 6) using your embedded development

tools. Several libraries and source files are pulled together to create the new executable for the

target (item 15).

Also shown in Figure 1 is a C code initializer file (item 20). This file is used when the target

lacks a tuning interface, and initializes the audio processing to a known state.

This document focuses exclusively on items 1 through 9 – those associated with creating custom

audio module DLLs on the PC. The AWE-Core™ Integration Guide takes you through the

remaining steps needed to update the audio module library on an embedded target and to create

C code initializers.

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 8 of 147 (v01)

MATLAB Server

Embedded

Dev Tools

Script

commands

Tuning

interface

Module

code

snippets

Template

files
Class ID

list

Audio module and

subsystem .m files

C code

initializer

Audio module

source code

(.c and .h)

Audio Weaver

Script (.aws)

files

Module

documentation

in Word or

HTML format Audio

Module DLL

Module

schema file

TargetInfo.h

Platform

source files

Audio Weaver

run-time files

User Interfaces

Target Hardware

Audio in Audio out
Flash file

system
Executable

12

3

4

5

20

6

8

7

9

12

11

10

15

VisualStudio

Native PC

Target
Audio in Audio out

Tuning

interface

Audio Module

.dlb

13

VectorLib.dlb

14

Figure 1. Overall Audio Weaver module design environment. The steps above the dark line are

required to develop custom audio modules on the PC. The steps below the dark line are for

developing custom audio modules for an embedded processor.

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 9 of 147 (v01)

2. Scaler Smoothed Module Example

This section walks through a complete example of an audio module, starting from the high-level

MATLAB model and continuing through the generated code. This example is identical to the

scaler_smoothed_module.m contained in the Deprecated module library. We go through this

module in a systematic fashion and reference the source files listed in Section 2.9. Section 7

contains additional module examples which highlight advanced features.

This module example is part of a larger audio module DLL containing several example modules.

The base directory for the audio module examples is

<AWE>\Modules\Examples\

where <AWE> refers to the root directory of the Audio Weaver installation. The directory

contains several subdirectories and this directory structure must be followed when creating other

custom audio module libraries.

2.1. Module M-files

Each audio module has an associated module M-file, item 1 shown in Figure 1. For this

example, the file is found in

<AWE>\Modules\Examples\matlab\scaler_smoothed_example_module.m

and a listing is shown in Section 2.9.1. When you first initialize Audio Weaver using

awe_init.m, this file will be placed on your MATLAB path. The module m-file completely

describes the audio module to MATLAB. It contains:

Input and output pins descriptions - Data types, number of channels, block sizes, sample

rates, etc.

Instance structure variables – Date types, variable names, array sizes, memory allocation

rules.

Documentation – Descriptions of variables, pins, and text describing the overall audio

model.

MATLAB implementation of the module – Processing function (optional), and if needed,

set function, bypass function, and get function. There may also be a prebuild

function which is called when a system is built.

User interface – Individual variables are exposed and tied to controls. Controls are

positioned and configured.

Browser information – This is the information for AWE Designer window to list under

specific folder, search tag, bit map image of the module in Designer window etc.

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 10 of 147
(v01)

All of these items above are documented in the Audio Weaver Matlab API. The specific items in

the module m-file pertaining to module generation are variables, code markers, and wiring

allocation guidelines described in Sections 5.1.11 and 5.2.

Subsystems are very similar to modules, but also contain a list of internal modules and a list of

connections between modules.

2.2. Audio Module Instance Structure

Every audio module has an associated instance data structure that holds the variables – state and

parameters – needed by the module. In this example, there are 4 variables described in the

module m-file:

add_variable(M, 'gain', 'float', 0, 'parameter', 'Target gain');

M.gain.range=[-10 10];

M.gain.units='linear';

add_variable(M, 'smoothingTime', 'float', 10, 'parameter', 'Time

constant of the smoothing process');

M.smoothingTime.range=[0 1000];

M.smoothingTime.units='msec';

add_variable(M, 'currentGain', 'float', M.gain, 'state', 'Instantaneous

gain applied by the module. This is also the starting gain of the

module.', 1);

M.currentGain.range=M.gain.range;

M.currentGain.units='linear';

add_variable(M, 'smoothingCoeff', 'float', NaN, 'derived', 'Smoothing

coefficient', 1);

The type definition for the instance data structure is contained in the file

ModScalerSmoothedExample.h and is automatically generated by Audio Weaver:

typedef struct _awe_modScalerSmoothedExampleInstance

{

 ModuleInstanceDescriptor instance;

 float gain; // Target gain

 float smoothingTime; // Time constant of the ...

 float currentGain; // Instantaneous gain applied

...

 float smoothingCoeff; // Smoothing coefficient

} awe_modScalerSmoothedExampleInstance;

The instance structure begins with a common substructure of type ModuleInstanceDescriptor.

This substructure points to the module's input and output wires, points to the real-time function

currently used by the module (Processing, Bypassed, Muted, etc.), and points to the class

instance structure.

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 11 of 147
(v01)

The module header is followed by the instance variables described in the MATLAB file. There

is a one-to-one correspondence between the variables shown in the instance structure and those

added by MATLAB. The description of each variable is used as a comment.

The header file also contains a few other items. First, there is a bit mask for each variable in the

data structure. The mask corresponds to the position of the variable within the instance structure.

Note that the module header is 8 words long and thus the first bit starts in the 9th bit position.

These bit masks can be used by the _Set() and _Get() functions to determine which variable

within the instance structure has been modified.

#define MASK_ScalerSmoothedExample_gain 0x00000100

#define MASK_ScalerSmoothedExample_smoothingTime 0x00000400

#define MASK_ScalerSmoothedExample_currentGain 0x00000200

#define MASK_ScalerSmoothedExample_smoothingCoeff 0x00000800

The header file also defines an offset for each instance variable. Again, this is the offset from the

start of the data structure, in 32-bit words. These offsets are provided to help implement system

control using a host interface.

#define OFFSET_ScalerSmoothedExample_gain 0x00000008

#define OFFSET_ScalerSmoothedExample_smoothingTime 0x0000000A

#define OFFSET_ScalerSmoothedExample_currentGain 0x00000009

#define OFFSET_ScalerSmoothedExample_smoothingCoeff 0x0000000B

There is a unique class ID.

#define CLASSID_SCALERSMOOTHEDEXAMPLE (CLASS_ID_MODBASE + 32768)

This integer uniquely defines the module class to the Server. Next is the definition of the

module's constructor function. In this case, since the module does not have any arrays, the

generic module constructor ClassModule_Constructor1 is used.

#ifndef AWE_STATIC_CODE

// This points the constructor for this class to the base constructor

#define awe_modScalerSmoothedExampleConstructor(ARG1, ARG2, ARG3, ARG4,

ARG5) ClassModule_Constructor(CLASSID_SCALERSMOOTHEDEXAMPLE, ARG1,

ARG2, ARG3, ARG4, ARG5)

#endif

1 The generic module constructor applies to modules that do not have indirect arrays in the instance data structure. It

is used by a large number of modules. The constructor function awe_modScalerSmoothedExample_Constructor() is

provided as a macro so that the module can be constructed within subsystems. We'll see shortly that the constructor

function is defined as NULL within the module's class structure.

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 12 of 147
(v01)

And finally, there are definitions for the processing and set functions:

void awe_modScalerSmoothedExampleProcess(void *pInstance);

UINT awe_modScalerSmoothedExampleSet(void *pInstance, UINT mask);

Note that many of the items are surrounded by #ifdef / #endif pairs. This allows various features

of the modules to be enabled or disabled at compile time.

2.3. Audio Module Source Code (.c and .h files)

Each audio module has a set of associated functions. These functions, and their definitions, are

placed in .c and .h files, respectively. At a minimum, every audio module requires a processing

function. In addition, a module may specify several optional functions:

Constructor() – Performs additional memory allocation or initialization when a module is

instantiated. If a module has an indirect array, such as an FIR filter, then a

constructor function is required. In many cases, MATLAB can generate the

constructor function automatically.

Set() – Implements a module's control functions which translate high-level interface

variables to low-level variables. The Set() function is automatically called

whenever an internal variable of a module is written by the Server during tuning.

Get() – Implements a module's control functions which translate low-level variables to

high-level interface variables. The Get() function is automatically called by the

Server whenever an internal variable of a module is read during tuning. Very few

modules actually implement this function.

Bypass() – Implements custom bypass functionality. Required when one of the standard

bypass functions is not suitable.

The module .c source file also contains a single class structure that describes the module to the

Audio Weaver run-time and dynamic memory allocation functions. For example, this module

contains the class structure:

AWE_MOD_SLOW_ANY_CONST

const ModClassModule awe_modScalerSmoothedExampleClass =

 {

#ifdef AWE_STATIC_CODE

 { CLASSID_SCALERSMOOTHEDEXAMPLE, NULL },

#else

 { CLASSID_SCALERSMOOTHEDEXAMPLE, NULL },

#endif

 ClassModule_PackArgCounts(4, 0),//(Public words, private words)

 awe_modScalerSmoothedExampleProcess, // Processing function

 IOMatchUpModule_Bypass, // Bypass function

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 13 of 147
(v01)

#ifndef AWE_NO_SETGET_FUNCTIONS

 awe_modScalerSmoothedExampleSet, // Set function

 0, // Get function

#else

 0, // Set function

 0, // Get function

#endif

 0, // Set State function

 };

The class structure contains pointers to the 5 functions listed above. The constructor function is

NULL indicating that the module requires no memory outside of its instance structure and that

the generic constructor should be used instead.

The class ID, CLASSID_SCALERSMOOTHEDEXAMPLE which is defined above, is a unique

integer identifying the module to the Server. When instantiating a module of this class, the

Server is told to instantiate a module of class "ModuleScalerSmoothedExample". This string

identifier is then translated to the underlying class ID through the module DLL shown as item 9

in Figure 1. Ensuring that each audio module has a unique classID can be tedious. To facilitate

this process, each module library has a text file named classids.csv, shown as item 3 in Figure 1,

containing a comma separated list of audio modules and their class IDs. A portion of the file is

shown below:

IDOFFSET=32768

ScalerSmoothedExample,0

ScalerExample,1

FaderExample,2

FaderExampleFract32,3

PeakHoldExample,4

DownsamplerExample,5

The classID for the ScalerSmoothedExample module equals the IDOFFSET (32768) plus the

value listed next to its class name below (0). Class IDs starting with 32768 are reserved for

custom audio modules.

2.4. Audio Module Schema File

The schema file provide a "blueprint" of all of the available objects on the target processor to the

Server. This enables the Audio Weaver Server to instantiate and manipulate objects by name

rather than hexadecimal IDs or offsets. The schema file for each module pack is embedded in the

module DLL and is shown as item 9 in Figure 1. It contains definitions for all of the available

audio modules in the module pack.

The entire schema file for the example module library is shown in Section 2.9.7. The portion

corresponding to the ScalerSmoothedExample module is shown below.

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 14 of 147
(v01)

ModuleScalerSmoothedExample 0x0xBEEF8800, BaseModule

{

 gain float // Target gain

 smoothingTime float // Time constant ...

 currentGain float // Instantaneous gain ...

 smoothingCoeff float // Smoothing coefficient

}

Note the one-to-one correspondence between the schema description and the C type definition

shown above. Furthermore, the C substructure ModuleInstanceDescriptor maps to the

BaseModule descriptor in the schema file.

To create an instance of a smoothly varying scaler on the target, the Server is told "create an

instance of class ModuleScalerSmoothedExample and call it Scale1". The Server converts this

to the command "create an instance of object 0xBEEF8800" via the schema file. The

hexadecimal value 0xBEEF0C16 corresponds to the unique class ID

CLASS_ID_MODBASE + 32768

contained in the class structure2. On the target, the array of module class objects is traversed

looking for class ID 0xBEEF8800. Once the class object is found, the corresponding constructor

function, stored as a pointer in the class structure, is used to allocate one instance of the object.

The address of the newly instantiated object is returned to the Server, and the Server associates

the object's address with the name "Scale1". The Server maintains this mapping between symbol

names and actual memory addresses.

The schema file also lists the module's instance variables and is used to compute offsets from the

start of an object. When the value "Scale1.gain" is set during tuning, the Server translates this to

a specific address on the DSP (PC) using the "Scale1" object address as a base, and then adding

an appropriate offset. In this case, the offset equals 8, the size of BaseModule.

2.5. Generating Module Code

The MATLAB file scaler_smoothed_example_module.m has a complete description of the audio

module with sufficient information to generate all of the source files and documentation. You

can generate the source files for a smoothly varying scaler using the commands:

M=scaler_smoothed_example_module('temp');

awe_generate_module(M);

2 As a side note, CLASS_ID_MODBASE = 0x BEEF0800, which is defined in Framework.h.

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 15 of 147
(v01)

The files

Include/ModScalerSmoothedExample.h

Source/ModScalerSmoothedExample.c

will be created in MATLAB's current working directory. You can specify a particular directory

for code generation by using an optional second argument:

awe_generate_module(M, DIR);

You can also specify that the C code should be formatted using the ident.exe utility (supplied)

via a third argument:

awe_generate_module(M, DIR, 1);

Modules are usually not created in isolation, but are part of a particular module pack library.

Modules need to be created as a unified library so that the combined schema file

ExamplesSchema.sch can be written. The MATLAB script make_examples.m generates code

for the entire Examples module library. The script first creates a cell array of audio modules:

MM=cell(0,0);

MM{end+1}=downsampler_example_module('temp', 2); % 100%

instantiation

MM{end+1}=fader_example_fract32_module('temp');

MM{end+1}=fader_example_module('temp');

MM{end+1}=lah_limiter_example_module('temp', 5); % 100%

instantiation

MM{end+1}=peak_hold_example_fract32_module('temp');

MM{end+1}=peak_hold_example_module('temp');

MM{end+1}=scaler_example_module('temp');

MM{end+1}=scaler_smoothed_example_module('temp');

Important point to be noted here is that the module must be added to cell array with all the

arguments required. This is mandatory for new AWE Designer.

Some of other example audio modules are subsystems that utilize modules found in other

libraries. We indicate this dependency relationship using the lines

[DependMM, DependName]=make_standardmodulepack(0);

USESLIB{1}.MM=DependMM;

USESLIB{1}.str=DependName;

[DependMM, DependName]=make_deprecatedmodulepack(0);

USESLIB{2}.MM=DependMM;

USESLIB{2}.str=DependName;

[DependMM, DependName]=make_advancedmodulepack(0);

USESLIB{3}.MM=DependMM;

USESLIB{3}.str=DependName;

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 16 of 147
(v01)

Then call a function to generate the source code for the overall library:

awe_generate_library(MM, DIR, 'Examples', USESLIB, GENDOC);

Code for each module in a module pack is separately generated followed by the combined

schema file. The third argument, 'Examples', specifies the module pack name and the forth

argument specifies the dependencies on other module packs. The fifth argument, GENDOC,

controls whether documentation in HTML format should be generated.

When you run the MATLAB script make_examples you'll see something similar to the following

written to your MATLAB output window

Generating code for module: DownsamplerExample

Unchanged output file:

<DIR >\Source\Modules\Examples\include\ModDownsamplerExample.h

Unchanged output file:

 <DIR >\Source\Modules\Examples\Source\ModDownsamplerExample.c

Generating code for module: FaderExampleFract32

Unchanged output file:

<DIR>\Source\Modules\Examples\include\ModFaderExampleFract32.h

Unchanged output file:

 <DIR >\Source\Modules\Examples\Source\ModFaderExampleFract32.c

...

Generated a total of 8 modules

You'll note that all source files are marked as "Unchanged". Audio Weaver only overwrites

generated files if there has been an actual change. This minimizes file changes and makes it

easier to work with source code control systems.

2.6. Template Substitution

Audio Weaver uses template substitution to generate audio module source and header files. The

template files are shown as item 2 in Figure 1, and two files are used

<AWE>\matlab\module_generation\templates\awe_module_template.c

<AWE>\matlab\module_generation\templates\awe_module_template.h

The template files contain boiler plate text together with string substitution variables and special

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 17 of 147
(v01)

preprocessor directives. Consider a portion of the file awe_module_template.h:

/*

 * @file $baseHFileName$

 */

#ifndef _MOD_$className$_H

#define _MOD_$className$_H

#include "ModCommon.h"

#include "MathHelper.h"

#include "FilterDesign.h"

$hFileInclude$

$hFileDefine$

Each substitution point is shown as $NAME$ in the template file. These substitution points are

replaced with the code markers added via awe_addcodemarker.m commands in the module file.

For example, when generating the scaler_smoothed_example_module, the string variable

$baseHFileName$ is replaced by "ModScalerSmoothedExample.h" and $className$ is replaced

by "ScalerSmoothedExample" to yield:

/*

 * @file ModScalerSmoothedExample.h

 */

#ifndef _MOD_ScalerSmoothedExample_H

#define _MOD_ScalerSmoothedExample_H

#include "ModCommon.h"

#include "MathHelper.h"

#include "FilterDesign.h"

By making changes to the template files, you can make wholesale changes to the entire module

library!

The template files also contain special forms of preprocessor directives – independent of the

standard C preprocessor directives. Further down in awe_module_template.h, you'll find the

function declarations:

void $processFunctionName$(void *pInstance);

##if $useCustomSetFunction$

UINT $setFunctionName$(void *pInstance, UINT mask);

##endif

##if $useCustomGetFunction$

UINT $getFunctionName$(void *pInstance);

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 18 of 147
(v01)

##endif

##if $useCustomBypassFunction$

void $bypassFunctionName$(void *pInstance);

##endif

The symbol ## identifies a preprocessor directive reserved for the code generator. The directives

are evaluated during code generation based on the values of the variables, for example the value

of $useCustomSetFunction$ determines if code will be eliminated or exist in the generated file.

The scaler smoothed example module has

$useCustomSetFunction$ defined as 1

$useCustomGetFunction$ defined as 0

$useCustomBypassFunction$ defined as 0.

This yields the generated code:

void ModuleScalerSmoothedExample_Process(void *pInstance);

UINT ModuleScalerSmoothedExample_Set(void *pInstance, UINT mask);

The variables used during template substitution are referred to as "code markers". Many code

markers are generated automatically by the awe_generate_module.m function. Some code

markers are explicitly defined in scaler_smoothed_example_module.m.

awe_addcodemarker(M, 'processFunction',

'Insert:code\InnerScalerSmoothed_Process.c');

awe_addcodemarker(M, 'setFunction',

'Insert:code\InnerScalerSmoothed_Set.c');

awe_addcodemarker(M, 'srcFileInclude', '#include "FilterDesign.h"');

Code markers beginning with the string "Insert:" cause input to be read from a specified file. For

example, the processing function template in awe_module_template.c is:

AWE_FAST_CODE

 void $processFunctionName$(void *pInstance)

 {

##if $usePreProcessFunction$

 {

 $preProcessFunction$

 }

##endif

 $processFunction$

##if $usePostProcessFunction$

 {

 $postProcessFunction$

 }

##endif

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 19 of 147
(v01)

 }

The string $processFunction$ is taken from the file

code\InnerScalerSmoothedExample_Process.c

shown in Section 2.9.2. You'll note that this is bare code missing even the function definition

(which is in the template file). The other code markers – "preProcessFunction" and

"postProcessFunction" are not defined. After template substitution, we end up with the final

processing function ModScalerSmoothedExample.c shown in Section 2.9.5.

2.7. Building the Audio Module DLL

At this point, the source code for all of the modules in the Examples library has been generated.

Open up and rebuild the VisualStudio solution file

<AWE>\Modules\Examples\Examples.sln

The solution builds the DLL and then copies it into the

<AWE>\Bin\win32-vc100-rel

directory so that it can be referenced by the Server. Further details on this step can be found in

Section 8.1.

2.8. Summary of Steps Involved in Writing an Audio Module

To summarize, the steps required in writing a new audio module are:

1. Create the MATLAB module m-file described in Section 2.1. It defines

a. Input and output pins

b. Instance structure variables

c. Links to inner C code.

d. Documentation

e. User interface

f. Module browser for AWE Designer

2. Write the inner C code for the processing function.

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 20 of 147
(v01)

3. Write the inner C code for the other module functions, Constructor(), Set(), Get(), and

Bypass(), if needed.

4. Pick a unique integer ID (any number in the range 32768 to 63487) for the new module

class ID. Add this information to the file classids.csv associated with the module library.

5. Add the module function to the specific module pack library generation script, for

example make_examples.m. Run the script file to generate the source code and create the

schema file.

6. Add the generated .c and .h files to the project for building the audio module pack library

(e.g., ExamplesLib.vcproj). And build the library.

7. Build the audio module DLL so that the new modules are visible by the Server.

2.9. Scaler Smoothed Example Source Files

2.9.1. scaler_smoothed_example_module.m

function M=scaler_smoothed_example_module(NAME)

% M=scaler_smoothed_example_module(NAME)

% Creates a smoothly varying scaler module with a single input

% and single output pin. This module operates on floating-point

% signals. Arguments:

% NAME - name of the module.

% Copyright 2007-2016. DSP Concepts, Inc. All Rights Reserved.

% Author: Paul Beckmann

%

% $Revision: 1.1 $

% AudioWeaverModule [This tag makes it appear under awe_help]

% --

% Create the high-level object with interface variables only.

% --

M=awe_module('ScalerSmoothedExample', 'Linear multichannel smoothly varying

scaler');

M.name=NAME;

M.preBuildFunc=@scaler_smoothed_example_prebuild;

M.processFunc=@scaler_smoothed_example_process;

M.setFunc=@scaler_smoothed_example_set;

PT=new_pin_type;

add_pin(M, 'input', 'in', 'audio input', PT);

add_pin(M, 'output', 'out', 'audio output', PT);

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 21 of 147
(v01)

add_variable(M, 'gain', 'float', 0, 'parameter', 'Target gain');

M.gain.range=[-10 10];

M.gain.units='linear';

add_variable(M, 'smoothingTime', 'float', 10, 'parameter', 'Time constant of

the smoothing process');

M.smoothingTime.range=[0 1000];

M.smoothingTime.units='msec';

add_variable(M, 'currentGain', 'float', M.gain, 'state', 'Instantaneous gain

applied by the module. This is also the starting gain of the module.', 1);

M.currentGain.range=M.gain.range;

M.currentGain.units='linear';

add_variable(M, 'smoothingCoeff', 'float', NaN, 'derived', 'Smoothing

coefficient', 1);

awe_addcodemarker(M, 'processFunction',

'Insert:code\InnerScalerSmoothedExample_Process.c');

awe_addcodemarker(M, 'setFunction',

'Insert:code\InnerScalerSmoothedExample_Set.c');

awe_addcodemarker(M, 'srcFileInclude', '#include "FilterDesign.h"');

M.wireAllocation='across';

% --

% Documentation

% --

M.docInfo.discussion={'Scales all input channels by a single gain value. ',

...

 'Changes to the gain parameter are exponentially smoothed (first order

IIR) at the sample rate, with the time constant determined by the

smoothingTime parameter. ', ...

 'This module is controlled by varying the gain variable. Internally,

currentGain represents the instantaneous smoothed gain that is applied. ',

...

 'currentGain exponentially approaches gain with a time constant equal to

smoothingTime. ', ...

 '', ...

 'The module''s prebuild function initializes the currentGain equal to the

gain. Thus, the module begins in a converged state.'};

% --

% Add the inspector information

% --

M.guiInfo.isExpanded=0;

M.gain.guiInfo.controlType='slider';

add_control(M, '.gain');

add_control(M, '.moduleStatus', 'right', 1);

add_control(M, '.smoothingTime', 'below', 1);

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 22 of 147
(v01)

% --

% Module browser information

% --

M.moduleBrowser.path = 'Examples';

M.moduleBrowser.image = '../images/E.bmp';

M.moduleBrowser.searchTags = 'scaler volume';

M.shapeInfo.basicShape = 'triangle';

M.shapeInfo.legend = ' ';

% --

% Call the prebuild function and force the low-level variables to be

% added.

% --

return;

% --

% Prebuild function. Behavior is based on the data type of the

% input pin

% --

function M=scaler_smoothed_example_prebuild(M, FORCE)

M.currentGain=M.gain;

M.currentGain.range=M.gain.range;

% Propagate the type of the input pin to the output

M.outputPin{1}.type=M.inputPin{1}.type;

return;

% --

% Set function. Computes the smoothing coefficient

% --

function M=scaler_smoothed_example_set(M)

% Compute the smoothing coefficient based on the smoothing time

SR=M.inputPin{1}.type.sampleRate;

M.smoothingCoeff = design_smoother(M.smoothingTime, SR, 1);

return;

2.9.2. InnerScalerSmoothedExample_Process.c

awe_modScalerSmoothedExampleInstance *S =

(awe_modScalerSmoothedExampleInstance *)pInstance;

WireInstance **pWires = ClassModule_GetWires(S);

FLOAT32 targetGain = S->gain;

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 23 of 147
(v01)

FLOAT32 smoothingCoeff = S->smoothingCoeff;

FLOAT32 *src = (FLOAT32 *)pWires[0]->buffer;

FLOAT32 *dst = (FLOAT32 *)pWires[1]->buffer;

UINT32 channels = ClassWire_GetChannelCount(pWires[0]);

UINT32 blockSize = ClassWire_GetBlockSize(pWires[0]);

FLOAT32 currentGain;

UINT32 i;

FLOAT32 *inPtr;

FLOAT32 *outPtr;

FLOAT32 oneMinusRate = 1.0f - smoothingCoeff;

INT32 sample;

for (i = 0; i < channels; i++)

{

 /* The same currentGain is used for each channel. Then we store the

result

 from the final channel back into the state. */

 currentGain = S->currentGain;

 /*awe_vecScaleSmooth(src + i, channels, dst + i, channels, ¤tGain,

 targetGain, smoothingCoeff, blockSize);*/

 inPtr = src + i;

 outPtr = dst + i;

 for(sample = 0; sample < (INT32)blockSize; sample++)

 {

 currentGain = currentGain * oneMinusRate + targetGain *

smoothingCoeff;

 *outPtr = *inPtr * currentGain;

 inPtr += channels;

 outPtr += channels;

 }

}

S->currentGain = currentGain;

2.9.3. InnerScalerSmoothedExample_Set.c

awe_modScalerSmoothedExampleInstance *S =

(awe_modScalerSmoothedExampleInstance *) pInstance;

WireInstance **pWires = ClassModule_GetWires(S);

float SR;

if (mask & MASK_ScalerSmoothedExample_smoothingTime)

{

 SR = (float) ClassWire_GetSampleRate(pWires[0]);

 S->smoothingCoeff = design_smoother(S->smoothingTime, SR, 1);

}

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 24 of 147
(v01)

return(0);

2.9.4. ModScalerSmoothedExample.h

/**

*

* Audio Framework

* ---------------

*

**

* ModScalerSmoothedExample.h

**

*

* Description: Linear multichannel smoothly varying scaler

*

* Copyright: DSP Concepts, Inc, 2007 - 2015

* 1800 Wyatt Drive, Suite 14

* Santa Clara, CA 95054

*

***/

/**

 * @addtogroup Modules

 * @{

 */

/**

 * @file

 * @brief Linear multichannel smoothly varying scaler

 */

#ifndef _MOD_SCALERSMOOTHEDEXAMPLE_H

#define _MOD_SCALERSMOOTHEDEXAMPLE_H

#include "ModCommon.h"

#include "MathHelper.h"

#define MASK_ScalerSmoothedExample_gain 0x00000100

#define MASK_ScalerSmoothedExample_smoothingTime 0x00000200

#define MASK_ScalerSmoothedExample_currentGain 0x00000400

#define MASK_ScalerSmoothedExample_smoothingCoeff 0x00000800

#define OFFSET_ScalerSmoothedExample_gain 0x00000008

#define OFFSET_ScalerSmoothedExample_smoothingTime 0x00000009

#define OFFSET_ScalerSmoothedExample_currentGain 0x0000000A

#define OFFSET_ScalerSmoothedExample_smoothingCoeff 0x0000000B

#define CLASSID_SCALERSMOOTHEDEXAMPLE (CLASS_ID_MODBASE + 32768)

#ifdef __cplusplus

extern "C" {

#endif

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 25 of 147
(v01)

// --

// Overall instance class

// --

typedef struct _awe_modScalerSmoothedExampleInstance

{

 ModuleInstanceDescriptor instance;

 float gain; // Target gain

 float smoothingTime; // Time constant of the smoothing

process

 float currentGain; // Instantaneous gain applied by

the module. This is also the starting gain of the module.

 float smoothingCoeff; // Smoothing coefficient

} awe_modScalerSmoothedExampleInstance;

/* By default the class object is included and this is required for dynamic

 * instantiation. When doing static code (define AWE_STATIC_CODE) you can

save

 * a little bit of memory by eliminating class objects. However, you lose

the

 * ability to change the module status. */

#if (!defined(AWE_NO_CLASS_OBJECTS) || !defined(AWE_STATIC_CODE))

extern const ModClassModule awe_modScalerSmoothedExampleClass;

#endif // #ifndef AWE_NO_CLASS_OBJECTS

/* Dynamic instantiation is used by default. When building for static

** code, define AWE_STATIC_CODE to eliminate the constructor function. */

#ifndef AWE_STATIC_CODE

// This points the constructor for this class to the base constructor

#define awe_modScalerSmoothedExampleConstructor(ARG1, ARG2, ARG3, ARG4, ARG5)

ClassModule_Constructor(CLASSID_SCALERSMOOTHEDEXAMPLE, ARG1, ARG2, ARG3,

ARG4, ARG5)

#endif // #ifndef AWE_STATIC_CODE

void awe_modScalerSmoothedExampleProcess(void *pInstance);

UINT32 awe_modScalerSmoothedExampleSet(void *pInstance, UINT32 mask);

#ifdef __cplusplus

}

#endif

#endif // _MOD_SCALERSMOOTHEDEXAMPLE_H

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 26 of 147
(v01)

/**

 * @}

 *

 * End of file.

 */

2.9.5. ModScalerSmoothedExample.c

/**

*

* Audio Framework

* ---------------

*

**

* ModScalerSmoothedExample.c

**

*

* Description: Linear multichannel smoothly varying scaler

*

* Copyright: DSP Concepts, Inc, 2007 - 2015

* 1800 Wyatt Drive, Suite 14

* Santa Clara, CA 95054

*

***/

/**

 * @addtogroup Modules

 * @{

 */

/**

 * @file

 * @brief Linear multichannel smoothly varying scaler

 */

#include "Framework.h"

#include "Errors.h"

#include "VectorLib.h"

#include "ModScalerSmoothedExample.h"

#include "FilterDesign.h"

#ifdef __cplusplus

extern "C" {

#endif

/* --

** Audio module class object. This describes the audio module to the

** framework. It contains pointers to functions and number of

** variables.

** --- */

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 27 of 147
(v01)

#if (!defined(AWE_NO_CLASS_OBJECTS) || !defined(AWE_STATIC_CODE))

AWE_MOD_SLOW_ANY_CONST

const ModClassModule awe_modScalerSmoothedExampleClass =

{

#ifndef AWE_STATIC_CODE

 { CLASSID_SCALERSMOOTHEDEXAMPLE, NULL },

#else

 { CLASSID_SCALERSMOOTHEDEXAMPLE, NULL },

#endif

 ClassModule_PackArgCounts(4, 0), // (Public words, private words)

 awe_modScalerSmoothedExampleProcess, // Processing

function

 IOMatchUpModule_Bypass, // Bypass function

#ifndef AWE_NO_SETGET_FUNCTIONS

 awe_modScalerSmoothedExampleSet, // Set function

 0, // Get function

#else

 0, // Set function

 0, // Get function

#endif

 0, // Set State function

};

#endif // #ifndef AWE_NO_CLASS_OBJECTS

/* --

** Memory allocation function. This is required because the module

** requires additional memory outside of its instance structure.

** --- */

/* Dynamic instantiation is used by default. When building for static

** code, define AWE_STATIC_CODE to eliminate the constructor function. */

#ifndef AWE_STATIC_CODE

#endif

/* --

** Real-time Processing function.

** --- */

AWE_MOD_FAST_CODE

void awe_modScalerSmoothedExampleProcess(void *pInstance)

{

 awe_modScalerSmoothedExampleInstance *S =

(awe_modScalerSmoothedExampleInstance *)pInstance;

 WireInstance **pWires = ClassModule_GetWires(S);

 FLOAT32 targetGain = S->gain;

 FLOAT32 smoothingCoeff = S->smoothingCoeff;

 FLOAT32 *src = (FLOAT32 *)pWires[0]->buffer;

 FLOAT32 *dst = (FLOAT32 *)pWires[1]->buffer;

 UINT32 channels = ClassWire_GetChannelCount(pWires[0]);

 UINT32 blockSize = ClassWire_GetBlockSize(pWires[0]);

 FLOAT32 currentGain;

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 28 of 147
(v01)

 UINT32 i;

 FLOAT32 *inPtr;

 FLOAT32 *outPtr;

 FLOAT32 oneMinusRate = 1.0f - smoothingCoeff;

 INT32 sample;

 for (i = 0; i < channels; i++)

 {

 /* The same currentGain is used for each channel. Then we store the

result

 from the final channel back into the state. */

 currentGain = S->currentGain;

 /*awe_vecScaleSmooth(src + i, channels, dst + i, channels,

¤tGain, targetGain,

 smoothingCoeff, blockSize);*/

 inPtr = src + i;

 outPtr = dst + i;

 for(sample = 0; sample < (INT32)blockSize; sample++)

 {

 currentGain = currentGain * oneMinusRate + targetGain *

smoothingCoeff;

 *outPtr = *inPtr * currentGain;

 inPtr += channels;

 outPtr += channels;

 }

 }

 S->currentGain = currentGain;

}

/* --

** Set function which updates derived parameters based on the

** module's interface variables.

** --- */

AWE_MOD_SLOW_CODE

UINT32 awe_modScalerSmoothedExampleSet(void *pInstance, UINT32 mask)

{

 awe_modScalerSmoothedExampleInstance *S =

(awe_modScalerSmoothedExampleInstance *) pInstance;

 WireInstance **pWires = ClassModule_GetWires(S);

 FLOAT32 SR;

 if (mask & MASK_ScalerSmoothedExample_smoothingTime)

 {

 SR = (float) ClassWire_GetSampleRate(pWires[0]);

 S->smoothingCoeff = design_smoother(S->smoothingTime, SR, 1);

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 29 of 147
(v01)

 }

 return(0);

}

#ifdef __cplusplus

}

#endif

/**

 * @}

 *

 * End of file.

 */

2.9.6. classids.csv

% Class ID list for the examples that are included in the Audio Weaver

% documentation.

IDOFFSET=32768

ScalerSmoothedExample,0

ScalerExample,1

FaderExample,2

FaderExampleFract32,3

PeakHoldExample,4

DownsamplerExample,5

LAHLimiterExample,6

PeakHoldExampleFract32,7

2.9.7. ExamplesSchema.sch

ModuleDownsamplerExample 0x0xBEEF8805, BaseModule

{

 D int // Decimation factor. 1 out of

every D samples is output

}

ModuleFaderExampleFract32 0x0xBEEF8803, BaseModule

{

 scaleFval float // Scaler Front

 scaleBval float // Scaler Back

 smoothingTimeF float // Time constant of the smoothing

process

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 30 of 147
(v01)

 smoothingTimeB float // Time constant of the smoothing

process

 scalerF *ModuleScalerSmoothedFract32 // Linear

multichannel smoothly varying scaler

 scalerB *ModuleScalerSmoothedFract32 // Linear

multichannel smoothly varying scaler

 inter *ModuleInterleave // Interleaves multiple audio

signals

}

ModuleFaderExample 0x0xBEEF8802, BaseModule

{

 fade float // Front/back Balance. +1 = front

only. -1 = rear only.

 smoothingTime float // Time constant of the smoothing

process

 scalerF *ModuleScalerSmoothed // Linear multichannel

smoothly varying scaler

 scalerB *ModuleScalerSmoothed // Linear multichannel

smoothly varying scaler

 inter *ModuleInterleave // Interleaves multiple audio

signals

}

ModuleLAHLimiterExample 0x0xBEEF8806, BaseModule

{

 maxDelayTime float // Maximum delay time

 max_abs *ModuleMaxAbs // Computes the maximum absolute

value of all input channels on a sample-by-sample basis

 core *ModuleAGCLimiterCore // Soft knee gain

computer for use in peak limiters

 delay *ModuleDelayMsec // Time delay in which the

delay is specified in milliseconds

 mult *ModuleAGCMultiplier // Mono x N-channel

multiplier

}

ModulePeakHoldExampleFract32 0x0xBEEF8807, BaseModule

{

 Reset int // reset the current peak values

 attackTime float // Envelope detector attack time

constant

 decayTime float // Envelope detector decay time

constant

 decayCoef fract32 // Computed coefficient used for

decay

 attackCoef fract32 // Computed coefficient used for

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 31 of 147
(v01)

attack

 peakHold *fract32 // Array of peak values

 peakDecay *fract32 // Array of decaying peak values

}

ModulePeakHoldExample 0x0xBEEF8804, BaseModule

{

 Reset int // reset the current peak values

 attackTime float // Envelope detector attack time

constant

 decayTime float // Envelope detector decay time

constant

 decayCoef float // Computed coefficient used for

decay

 attackCoef float // Computed coefficient used for

attack

 peakHold *float // Array of peak values

 peakDecay *float // Array of decaying peak values

}

ModuleScalerExample 0x0xBEEF8801, BaseModule

{

 gain float // Linear gain

}

ModuleScalerSmoothedExample 0x0xBEEF8800, BaseModule

{

 gain float // Target gain

 smoothingTime float // Time constant of the smoothing

process

 currentGain float // Instantaneous gain applied by the

module. This is also the starting gain of the module.

 smoothingCoeff float // Smoothing coefficient

}

2.9.8. ExamplesSchema.cpp

Not shown. This is a C file with initialized binary arrays.

2.9.9. Examples.h

extern const ModClassModule awe_modDownsamplerExampleClass;

extern const ModClassModule awe_modFaderExampleFract32Class;

extern const ModClassModule awe_modFaderExampleClass;

extern const ModClassModule awe_modLAHLimiterExampleClass;

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 32 of 147
(v01)

extern const ModClassModule awe_modPeakHoldExampleFract32Class;

extern const ModClassModule awe_modPeakHoldExampleClass;

extern const ModClassModule awe_modScalerExampleClass;

extern const ModClassModule awe_modScalerSmoothedExampleClass;

#define LISTOFCLASSOBJECTS \

&awe_modDownsamplerExampleClass, \

&awe_modFaderExampleFract32Class, \

&awe_modFaderExampleClass, \

&awe_modLAHLimiterExampleClass, \

&awe_modPeakHoldExampleFract32Class, \

&awe_modPeakHoldExampleClass, \

&awe_modScalerExampleClass, \

&awe_modScalerSmoothedExampleClass

#define USESDLLS "ModulePackAweDeprecatedDLL.dll"

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 33 of 147
(v01)

3. MATLAB Function Reference

This section describes Audio Weaver's MATLAB functions related to module generation. Audio

Weaver makes heavy use of MATLAB’s object oriented features. An object in MATLAB is a

data structure with associated functions or methods. Each type of object is referred to as a class,

and Audio Weaver uses separate classes to represent variable, modules, and subsystems. The

class functions are stored in directories that start with the “@” symbol. Under <AWE>\matlab\

are found 3 class directories:

@awe_variable\

@awe_module\

@awe_subsystem\

It is important to understand how to use and manipulate these classes in order to properly use all

of the features of Audio Weaver. We begin by describing each class and then document

additional MATLAB commands used for constructing modules.

3.1. @awe_variable

A variable in Audio Weaver represents a single scalar3 or array variable on the target processor.

Even if you are not developing modules, it is good to understand the @awe_variable object so

that you can fully utilize variables.

A variable in Audio Weaver represents a single scalar or array variable on the target processor.

A new scalar variable is created by the call:

awe_variable(NAME, TYPE, VALUE, USAGE, DESCRIPTION, ISHIDDEN,

ISCOMPLEX)

Variables in Audio Weaver have a close correspondence to variables in the C language. The

arguments are:

NAME – name of the variable as a string.

TYPE – C type of the variable as a string. For example, ‘int’ or ‘float’.

VALUE – initial value of the variable.

USAGE – a string specifying how the variable is used in Audio Weaver. Possible values

are:

‘const’ – the variable is initialized when the module is allocated and does not

3 Scalar is a mathematical term and refers to a variable containing only a single value. Do not confuse this with a

scaler which is a specific type of audio module.

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 34 of 147
(v01)

change thereafter.

‘parameter’ – the variable can be changed at run-time and is exposed as a control.

‘derived' – similar to a parameter, but the value of the variable is computed based

on other parameters in the module. Derived variables are not exposed as

controls.

‘state’ – the variable is set at run-time by the processing function.

DESCRIPTION – a string describing the function of the variable.

ISHIDDEN – an optional Boolean indicating whether the variable is visible

(ISHIDDEN=0) or hidden (ISHIDDEN=1). By default, ISHIDDEN=0.

ISCOMPLEX – an optional Boolean indicating whether the variable is real valued

(ISCOMPLEX=0) or complex (ISCOMPLEX=1). By default, ISCOMPLEX=0.

Note, Audio Weaver only supports complex valued arrays, not scalars.

You typically do not use the awe_variable.m function directly. Rather, the function is

automatically called when you add variables to modules or subsystems using the add_variable.m

or add_array.m functions documented in Sections 3.6 and 3.7.

Only 32-bit data types are supported. Allowable types are: 'float', 'int', 'uint', 'and 'fract32'.

We now look carefully at one of the variables in the agc_example.m system. At the MATLAB

prompt, type:

SYS=agc_example;

struct(get_variable(SYS.agc.core, 'targetLevel'))

The get_variable.m command extracts a single variable from a module and returns the

@awe_module object. (If you instead try to access SYS.agc.core.targetLevel you'll only get the

value of the variable, not the actual structure.) The MATLAB struct.m command turns an object

into a data structure revealing each of its internal fields. You'll see:

 name: 'targetLevel'

 hierarchyName: 'agc.core.targetLevel'

 value: -20

 size: [1 1]

 type: 'float'

 isComplex: 0

 range: [-50 50 0.1000]

 isVolatile: 0

 usage: 'parameter'

 description: 'Target audio level.'

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 35 of 147
(v01)

 arrayHeap: 'AWE_HEAP_FAST2SLOW'

 memorySegment: 'AWE_MOD_FAST_ANY_DATA'

 arraySizeConstructor: ''

 constructorCode: ''

 guiInfo: [1x1 struct]

 format: '%g'

 units: 'dB'

 isLive: 1

 isHidden: 0

 presets: [1x1 struct]

 isArray: 0

 targetInfo: [1x1 struct]

 isLocked: 1

 isPtr: 0

 ptrExpr: ''

 isRangeEditable: 1

 isTuningSymbol: 0

 isTextLabel: 1

 isPreset: 1

 isDisplayed: 1

 classVersion: 29341

 class: 'awe_variable'

 fieldNames: {32x1 cell}

Many of the fields are set when the variable was added to the module or at build time. Some of

them can be set after a module has been built.

name – string indicating the name of the variable. This was set when the variable was

added to the module. Not user editable.

hierarchyName – hierarchical location of the variable in the overall system. Initially

empty and then set by build.m. Not user editable.

value – current value of the variable. Although it can be read and written by the user, it is

easier to access the value simply by referencing

SYS.agc.core.targetLevel

size – 1x2 element vector used to represent the size of matrices, [rows columns]. For

scalars, this is always [1 1]. Set when the variable was added to the module or by

the prebuild function. Not user editable.

type – string specifying the underlying data type of the variable. Allowable values are

'float', 'fract32', 'int', and 'uint'. Set when the variable was added to the module.

Not user editable.

isComplex – Boolean indicating whether the variable contains complex data. Set when

the variable was added to the module. Only arrays can be complex, not individual

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 36 of 147
(v01)

scalar variables. Not user editable.

range – a vector or matrix specifying the allowable range of the variable. This is used to

validate variable updates and also to draw knobs and sliders. This vector uses the

same format as the pin type described in Section 3.4. User editable.

usage – a string specifying how the variable is used in Audio Weaver. Set when the

variable was added to the module. Not user editable. Possible values are:

‘const’ – the variable is initialized when the module is allocated and does not

change thereafter.

‘parameter’ – the variable can be changed at run-time and is exposed as a control.

‘derived' – similar to a parameter, but the value of the variable is computed based

on other parameters in the module. Derived variables are not exposed as

controls.

‘state’ – the variable is set at run-time by the processing function.

description - a string describing the purpose or usage of the variable. User editable.

arrayHeap – used to specify array allocation information to the code generator. User

editable.

memorySegment - used to specify array allocation information to the code generator.

User editable.

arraySizeConstructor - used to specify array allocation information to the code generator.

User editable.

constructorCode - specifies variable initialization when a module exists within a

subsystem and is used by the code generator. User editable.

guiInfo – structure used to hold GUI related information. Some fields are user settable.

Refer to the chapter in the Audio Weaver Matlab API that discusses creating

custom inspector interfaces.

format - C formatting string used by when displaying values in the MATLAB output

window. Follows the formatting convention of the printf function. User editable.

units - a string containing the underlying units of the variable. For example, ‘dB’ or

‘Hz’. This is used by documentation and on user interface panels. User editable.

isLive – Boolean variable indicating whether the variable is residing on the target (isLive

= 1), or if it has not yet been built (isLive=0). This starts out equaling 0 when the

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 37 of 147
(v01)

module is instantiated and the set to 1 by build.m. Not user editable.

isVolatile – Boolean indicating whether the variable is changed outside of MATLAB and

needs to be read from the target each time. Reading of variables from the target

only occurs when isLive=1. By default, only 'const' variables have isVolatile set

to 0; all others are set to 1. User editable.

isHidden – Boolean indicating whether a variable is hidden. Hidden variables are not

shown when a subsystem is displayed in the MATLAB output window.

However, hidden variables may still be referenced. User editable.

isPreset – Boolean indicating whether the variable is included in presets. Used by the

create_preset.m function. User editable.

isArray – Boolean indicating whether the variable is a scalar or an array. Scalars values

occur in the instance data structure. Arrays have pointers in the instance data

structure. This field is set when the variable is first instantiated and should not be

changed thereafter.

targetInfo – internal data structure used when tuning the variable at run-time. Not user

editable.

fieldNames – internal cell array of field names (actually the names of the fields in this

data structure). It is used to accelerate references. Not user editable.

isLocked – internal field used to accelerate references. Not user editable.

isPtr – Boolean indicating whether the variable is a pointer of type ptrExpr.

ptrExpr – string specifying the pointer type of the variable.

isRangeEditable – Boolean indicates whether the variable range is editable or not.

isTuningSymbol – Boolean indicates whether the variable is real time tunable or not.

classVersion – internal field indicates the SVN version number.

class – string specifying the underlying object class. This is always 'awe_variable'. Not

user editable.

The .isHidden field can be used to hide variable that the user typically does not need to know

about. For example, allocate a 2nd order Biquad filter:

>> M=biquad_module('filter')

filter = Biquad // 2nd order IIR filter

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 38 of 147
(v01)

 b0: 1 // First numerator coefficient

 b1: 0 // Second numerator coefficient

 b2: 0 // Third numerator coefficient

 a1: 0 // Second denominator coefficient

 a2: 0 // Third denominator coefficient

All 5 of the tunable filter coefficients are shown. After the filter is built, state variables are

added. You can see them by typing:

>> M.state

ans =

 0

 0

Of course, this assumes that you know that this module has a variable named .state. To show all

hidden variables in the MATLAB output window, set

AWE_INFO.displayControl.showHidden=1;

Then, looking at the Biquad filter, the hidden .state variable will be shown as well:

filter = Biquad // 2nd order IIR filter

 b0: 1 // First numerator coefficient

 b1: 0 // Second numerator coefficient

 b2: 0 // Third numerator coefficient

 a1: 0 // Second denominator coefficient

 a2: 0 // Third denominator coefficient

 state: 0

 0]

3.2. @awe_module

This class represents a single primitive audio processing function on the target. A module

consists of the following components: a set of names, input and output pins, variables, and

functions. All of these items exist in MATLAB and many of them have duals on the target itself.

3.2.1. Class Object

To create an audio module object, call the function

M=awe_module(CLASSNAME, DESCRIPTION)

The first argument, CLASSNAME, is string specifying the class of the module. Each module

must have a unique class name, and modules on the Server are instantiated by referencing their

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 39 of 147
(v01)

class name4. The second argument, DESCRIPTION, is a short description of the function of the

module. The DESCRIPTION string is used when displaying the module or requesting help.

After the module class is created, set the particular name of the module:

M.name='moduleName';

Note that there is a distinction between the CLASSNAME and the .name of a module. The

CLASSNAME is the unique identifier for the type of the module. For example, there are

different class names for scalers and biquad filters. The .name identifies the module within a

system and must be unique within the current level of hierarchy in the system. At this point, we

have a bare module without inputs, outputs, variables, or associated functions. These must each

be added.

We'll now look more closely at the fields within the @awe_module object. Instead of looking at

a bare module as returned by awe_module.m, we'll look at a module that is part of a system and

has already been built. We'll choose the core module within the agc_example:

SYS=agc_example;

struct(SYS.agc.core)

MATLAB displays

 name: 'core'

 className: 'AGCCore'

 description: 'Slowly varying RMS based gain computer'

 classID: []

 constructorArgument: {}

 defaultName: 'AGCCore'

 moduleVersion: 29831

 classVersion: 31174

 isDeprecated: 0

 mfilePath: [1x75 char]

 mfileDirectory: [1x57 char]

 mfileName: 'agc_core_module.m'

 mode: 'active'

 clockDivider: 1

 inputPin: {[1x1 struct]}

 outputPin: {[1x1 struct]}

 scratchPin: {}

 variable: {1x17 cell}

 variableName: {1x17 cell}

 control: {[1x1 struct] [1x1 struct] [1x1 struct]

[1x1 struct] [1x1 struct] [1x1 struct] [1x1 struct] [1x1 struct]

4 The function classid_lookup.m can be used to determine if a class name is already in use. Refer to Audio Weaver

Module Developers Guide for more information.

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 40 of 147
(v01)

[1x1 struct] [1x1 struct]}

 wireAllocation: 'distinct'

 getFunc: []

 setFunc: @agc_core_set

 enableSetFunc: 0

 processFunc: @agc_core_process

 bypassFunc: @agc_core_bypass

 muteFunc: @generic_mute

 preBuildFunc: @agc_core_prebuild_func

 postBuildFunc: []

 testHarnessFunc: @test_agc_core

 profileFunc: @profile_simple_module

 pinInfoFunc: []

 isHidden: 0

 isPreset: 1

 isMeta: 0

 metaFuncName: []

 requiredClasses: {}

 consArgPatchFunc: []

 moduleBrowser: [1x1 struct]

 textLabelFunc: []

 textInfo: [1x1 struct]

 shapeInfo: [1x1 struct]

 freqRespFunc: []

 bypassFreqRespFunc: []

 prepareToSaveFunc: []

 copyVarFunc: @generic_copy_variable_values

 inspectFunc: []

 inspectHandle: []

 inspectPosition: []

 inspectUserData: [1x1 struct]

 numericInspectHandle: []

 numericInspectPosition: []

 freqRespHandle: []

 freqRespPosition: []

 isTunable: 1

 view: [1x1 struct]

 isLive: 1

 hierarchyName: 'agc.core'

 hasFired: 1

 targetInfo: [1x1 struct]

 allocationPriority: 0

 isTuningSymbol: 0

 objectID: []

 procSIMDSupport: {}

 codeMarker: {[1x1 struct] [1x1 struct] [1x1 struct]

[1x1 struct] [1x1 struct]}

 isTopLevel: 0

 executionDependency: {}

 presets: [1x1 struct]

 presetTable: [1x1 struct]

 numPresets: 0

 guiInfo: [1x1 struct]

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 41 of 147
(v01)

 drawInfo: [1x1 struct]

 uccInfo: [1x1 struct]

 docInfo: [1x1 struct]

 isLocked: 1

 class: 'awe_module'

 isNavigable: 1

 module: {}

 moduleName: {}

 connection: {}

 flattenOnBuild: 1

 isVirtual: 0

 targetSpecificInfo: [1x1 struct]

 isPrebuilt: 1

 preProcessFunc: []

 postProcessFunc: []

 buildFunc: []

 fieldNames: {87x1 cell}

where

name – name of the module within the subsystem. This is specified when the module is

instantiated and cannot be changed thereafter. Not user editable.

className – name of the underlying module class. This is specified when the module is

instantiated and cannot be changed thereafter. Not user editable.

description – short comment indicating what the module does. User editable.

classID – unique integer which identifies the module class on the target. This value is set

by the code generator and is normally blank. Not user editable.

constructorArgument – list of the arguments to the module. Module must be called with

all arguments while generating the code. This field is important for AWE

Designer to pass arguments to module.

defaultName – Fixed default name of the module.

moduleVersion – Version of the module.

classVersion – Version of the module class.

isDeprecated – Boolean indicates whether the module is deprecated in the current version

of AWE Designer.

mfilePath – full path to the m-file which instantiated the module (the one containing the

call to @awe_module). Used by the code generator. Not user editable.

mfileDirectory – the directory portion of mfilePath. Not user editable.

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 42 of 147
(v01)

mfileName – the file name portion of mfilePath. Not user editable.

mode – string indicating the current module status. This can be either 'Active',

'Bypassed', 'Muted', or 'Inactive'. Used internally and is not user editable. Use the

functions awe_setstatus.m and awe_getstatus.m to manipulate the module status.

clockDivider – integer indicating how often the module will be run within the layout.

This is currently always set to 1 (meaning run every time). This is reserved for

new Audio Weaver functionality planned in the future. Not user editable.

inputPin – cell array of input pin information. This information is set by the add_pin.m

function and should not be changed. You'll frequently access this to determine

the properties of the input pins. Each cell value contains a data structure such as

SYS.agc.core.inputPin{1}

ans =

 type: [1x1 struct]

 usage: 'input'

 name: 'in'

 description: 'Audio input'

 referenceCount: 0

 isFeedback: 0

 drawInfo: [1x1 struct]

 wireIndex: 1

outputPin – similar to inputPin. It is a cell array describing the output pins.

scratchPin - similar to inputPin. It is a cell array describing the scratch pins.

variable – a cell array of @awe_variable objects corresponding to the variables in this

module. This array is updated by the add_variable.m function. Not user editable.

variableName – a cell array of strings, one for each variable in the module. This cell

array is used to speed up variable accesses. This array is updated by the

add_variable.m command. Not user editable.

control – holds internal information related to the inspector. Not user editable.

wireAllocation – a string specifying how wires should be allocated for the module.

Possibilites are 'across' and 'distinct'.

getFunc – optional MATLAB function pointer specifying the module's get function. This

function is called whenever a variable in the module is queried. Used very rarely.

Normally this is set to the empty matrix.

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 43 of 147
(v01)

setFunc – optional MATLAB function pointer specifying the module's set (or control)

function.

processFunc – optional MATLAB function pointer specifying the module's processing

function. The processing function is a MATLAB implementation of the audio

processing performed by the module.

bypassFunc – optional MATLAB function pointer specifying the module's bypass

behavior.

muteFunc – optional MATLAB function pointer specifying the module’s mute behavior.

preBuildFunc – optional MATLAB function pointer specifying the module's prebuild

functionality. The prebuild function is called prior to building the module or

generating code and resolves pin types and array sizes.

postBuildFunc – optional MATLAB function pointer specifying the module’s postbuild

functionality. Generally most of the module will have this field as empty.

testHarnessFunc – optional MATLAB function pointer specifying the module’s test

harness script.

profileFunc – optional MATLAB function pointer specifying the module’s profile

function.

isHidden – Boolean specifying whether the module should be shown when part of a

subsystem. Similar to the .isHidden field of @awe_variable objects. User

editable.

isPreset – Boolean that indicates whether the module will be included in generated

presets. By default, this is set to 1. User editable.

isMeta – Boolean specifying whether this is a meta-module which switches out at build

time.

metaFuncName – optional string specifying the name of the underlying module to

instantiate if this is a meta module.

requiredClasses – This is the list of classes required for the current instantiation of the

 module. For meta modules it could be a subset of requiredClassesBrowser.

consArgPatchFunc – Custom function to matchup older version of system with new

module.

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 44 of 147
(v01)

moduleBrowser – This is the information for displaying the module in AWE Designer

GUI. It includes the image of the module in the designer module tree, search tag,

name of the module in browser etc. Look for .moduleBrowser for more

information.

textLabelFunc – Function for generating a text lablel when drawn in the AWE Designer

GUI. Look at the .textLablelFunc for more information.

textInfo – Text label properties information.

shapeInfo – Is a structure which holds shape information of the module in the AWE

Designer GUI. It includes the name of the SVG image used to draw on the layout,

size of the module, shape of the module etc. Look at .shapeInfo for more

information. Default shape information is Rectangle box with Solid lines with

Black color. This can be overwritten by initializing fields in this structure.

freqRespFunc – Optional MATLAB function pointer for computing the frequency

response of the module.

bypassFreqRespFunc – Frequency response function of the module in bypass mode.

prepareToSaveFunc – Function for clearing out internal pointers or other state that is not

needed when the module is saved.

copyVarFunc – optional MATLAB function pointer that is called when a module’s

variables need to be copied. User can over right the default generic copy variables

function.

 inspectFunc – optional MATLAB function for drawing custom inspector.

inspectHandle – Figure handle of the custom inspector, internal to the Audio Weaver.

inspectPosition – Position, [x y], of the custom inspector in MATLAB coordinates used

by the “inspect” function of the Audio Weaver.

inspectUserData – Custom inspector persisted information.

numericInspectHandle – Numeric inspector handle of the module for AWE Designer.

numericInspectPosition – Position, [x y], of the numeric inspector of the module in

MATLAB coordinates for designer.

freqRespHandle – Module’s frequency response handle.

freqRespPosition – Position, [x y], of the frequency response to be drawn in MATLAB

coordinates for designer.

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 45 of 147
(v01)

isTunable – Boolean indicating whether the variables in the module are real time tunable

or not in designer.

View – Structure of various fields internal to Audio Weaver holds the view settings in the

designer.

isLive –Boolean indicating whether the module has been built and is running on the

target. When a module is first instantiated, this is set to 0 and then changed to 1

by the build process. Not user editable.

hierarchyName – hiearchical name of the module within the subsystem. This is filled in

during the build process. Not user editable.

hasFired – Boolean field that is used internally by the routing algorithm. Not user

editable.

targetInfo – data structure holding target specific information. This is filled in by the

build process and is used internally for tuning. Not user editable.

codeMarker – a cell array holding all of the code markers. Code markers are used for

module generation and described in Section 5.2. Not user editable.

isTopLevel – Boolean set by the buid process. A value of 1 indicates that a module is the

highest level item in a system. All modules have .isTopLevel=0; only the top-

level subsystem has .isTopLevel=1. Not user editable.

guiInfo – data structure used for drawing inspectors. Some fields are user editable. See

the Section in the Audio Weaver Matlab API that discusses creating custom

inspector interfaces.

drawInfo – data structure used internally when creating drawings of subsystems and

modules. Not user editable.

docInfo – data structure containing documentation information. This is set in the

module's m-file and is used by the automated documentation generator. Some

user editable fields. Refer to the Section 6.

isLocked – internal field used to accelerate references. Not user editable.

class – string specifying the underlying object class. This is always 'awe_module'. Not

user editable.

fieldNames – internal cell array of field names (actually the names of the fields in this

data structure). It is used to accelerate references. Not user editable.

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 46 of 147
(v01)

3.2.2. MATLAB Functions for Constructing Modules

The following functions are commonly used for constructing audio modules. They are briefly

mentioned here and are documented later on in this guide.

add_variable.m – adds a scalar variable to an audio module object. See Section 3.6

add_array.m – adds an indirect array to an audio module object. See Section 3.7

add_pin.m – adds an input, output, or scratch pin to an audio module object. See Section

3.5.

add_codemarker.m – adds information related to code generation. See Section 5.2.

add_control.m – exposes a single control on the inspector. See the Audio Weaver Matlab

API.

set_variable.m – replaces an existing module variable. See Section 3.11

get_variable.m – extracts a variable from a module and returns an @awe_variable object.

See Section 3.11

3.2.3. Internal Module Functions

Every module in Audio Weaver has an associated MATLAB function file that constructs an

@awe_module object describing the module. Audio Weaver uses the convention that these

module constructor functions end in "_module.m". In addition to configuring the module’s

input and output pins, and defining instance variables, the constructor function also assigns a

number of method functions, and these functions are typically contained as sub-functions in the

constructor file.

There is a close coupling between the module related C functions the module subfunctions on the

target processor. The table below gives a brief description of the functions available.

MATLAB Function

Name

Target

Function Name

Purpose
*_module.m *_Constructor() Constructs an instance of a module class. The

function allocates memory for the base instance

structure. The MATLAB function sets default

values while on the target default values are passed

into the constructor. Required.

.processFunc *_Process() Real-time processing function. Required for C

code. Optional for MATLAB.

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 47 of 147
(v01)

.setFunc *_Set() Implements the module's control functionality.

The function converts high-level interface

parameters to lower-level derived values. This

function should be called whenever a variable in a

module is modified. Optional.

.getFunc *_Get() The counterpart to the _Set() function but is used

when module variables are read. Most modules do

not use this function. When a module instance

variable is read, this function is first called and

then the instance variable is returned. It could be

used, for example, to convert a measurement from

energy to dB.

.bypassFunc *_Bypass() Implements the module's bypass functionality.

This is an optional function; when it is empty, a

generic bypass function is used instead.

.preBuildFunc N/A This function exists only in MATLAB and it is

called as part of the build procedure. The prebuild

function propagates pin information and may

update array sizes. The prebuild function is useful

for setting variable values that depend upon the pin

type. The prebuild function is optional; if it

doesn't exist, the pin type information from the

module's first input pin is propagated to the output.

.freqRespFunc

N/A This optional function exists only in MATLAB

and it computes the frequency response of the

module.

.profileFunc

N/A This optional function exists only in MATLAB

and it profiles the module for various settings like

different block size and etc.

.textLabelFunc

N/A This optional function exists only in MATLAB

and it draws the text label for the AWE Designer

GUI.

3.2.3.1. MATLAB Module M-File

The MATLAB m-file associated with an audio module creates and returns an instance of the

module. The typical function signature for a module m-file is

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 48 of 147
(v01)

function M=new_module(NAME, ARG1, ARG2,…)

where NAME is a string module name and ARG1, ARG2, are optional arguments. Good

practice is to set default values for all arguments except NAME. For example:

if (nargin < 2)

 ARG1=1;

end

if (nargin < 3)

 ARG2=3;

end

The main difference between the MATLAB instantiation function and the C constructor is that

the C constructor is responsible for all memory allocation. MATLAB, on the other hand, has the

option of doing memory allocation in the prebuild function.

3.2.3.2. .processFunc

This function provides a MATLAB implementation of the module's processing function. The

function signature is:

function [M, WIRE_OUT]=new_process(M, WIRE_IN)

where

M – is the @awe_module object.

WIRE_IN – a cell array of corresponding to the input data to be processed by the module.

Note that M serves as both an input argument and output result of the function. The function

modifies the state variables within M and then returns the updated object. WIRE_OUT is a cell

array containing the output data.

Each element within the WIRE_IN cell array is an MxN matrix representing the input data at a

particular pin. Each column of the input data represents a different channel. The audio data is

processed and the result written to WIRE_OUT. For example, the processing function for the

scaler_module.m computes

function [M, WIRE_OUT]=scaler_process(M, WIRE_IN)

WIRE_OUT=cell(size(WIRE_IN));

for i=1:length(WIRE_OUT)

 WIRE_OUT{i}=WIRE_IN{i}*M.gain;

end

return;

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 49 of 147
(v01)

One difference between MATLAB and C is that the wires in MATLAB serve only to pass data

in and out of the processing function. Pin information is determined in MATLAB from fields in

the audio module structure. For example, to determine the sample rate of the first input, use

M.inputPin{1}.type.sampleRate

whereas in C, you would use

SR = (float) ClassWire_GetSampleRate(pWires[0]);

3.2.3.3. .setFunc

Implements the main control functional for a module. This function is called whenever a

variable within the audio module is updated. The function signature is:

function M=new_set(M)

where

M – is the @awe_module object.

Note that the MATLAB set function does not have a MASK argument indicating which variable

changed.

3.2.3.4. .getFunc

Implements secondary control functionality. This function is called when a variable in the

module is read. The function signature is identical to the .setFunc

function M=new_get(M)

where

M – is the @awe_module object.

3.2.3.5. .bypassFunc

Provides a custom bypass function for a module. The function signature is identical to the

.processFunc

function [M, WIRE_OUT]=new_bypass(M, WIRE_IN)

where

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 50 of 147
(v01)

M – is the @awe_module object.

WIRE_IN – a cell array of corresponding to the input data to be processed by the module.

3.2.3.6. .preBuildFunc

This function is called when a system is built for execution on a target. The function updates any

internal variables which depend upon the sample rate, block size, or number of channels. The

function also implements non-standard pin propagation functionality. The function signature is:

function M=new_prebuild(M)

where

M – is the @awe_module object.

The function updates and returns the module object M.

3.2.3.7. .freqRespFunc

This function computes the frequency response of the system. The function signature is:

function H_OUT=new_freq_response(M, H_IN, W)

where

 M – is the @awe_module object.

 H_IN – a cell array of corresponding to the input data.

 W – vector of frequencies at which frequency response to be computed.

 H_OUT – a cell array of frequency response output of corresponding input data.

3.2.3.8. .textLabelFunc

This is an optional function which returns text labels to be displayed in AWE Designer. The

function signature is:

Function L=sof40_cascade_text_label(M)

Where,

 M – is the @awe_module object.

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 51 of 147
(v01)

 L – a cell array of strings with desired text labels in AWE Designer

3.3. @awe_subsystem

This class represents both systems and subsystems; they are equivalent and no distinction is

made in Audio Weaver. A subsystem has all of the characteristics of an audio module: a class

name, input and output pins, variables, and associated sub-functions. In addition, a subsystem

contains two other items:

1. Internal modules.

2. Connections between the modules and the subsystem input and output pins.

Key subsystem functions are described next.

3.3.1. ClassObject

The call to create a new empty subsystem is similar to the call to create a new module described

in Section 3.2.1

SYS=awe_subsystem(CLASSNAME, DESCRIPTION);

You have to provide a unique class name and a short description of the function of the

subsystem. (To be precise, the CLASSNAME only has to be unique if you are generating C code

using the new subsystem class. Then, the CLASSNAME has to be unique among all of the

subsystems and audio modules.)

After the subsystem is created, set the particular name of the subsystem:

SYS.name='subsystemName';

At this point, we have an empty subsystem; no modules, pins, variables, or connections.

As before, we'll look at the internal fields of a subsystem and we'll use a running subsystem as an

example. The @awe_subsystem object is derived from an @awe_module object. In fact, the

first 36 fields of a subsystem are identical to a module object. The only new fields are:

 isPrebuilt: 1

 preProcessFunc: []

 postProcessFunc: []

 buildFunc: @pcserver_build

 drawFunc: []

 module: {1x6 cell}

 moduleName: {1x6 cell}

 connection: {1x7 cell}

 flattenOnBuild: 1

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 52 of 147
(v01)

 targetSpecificInfo: [1x1 struct]

isPrebuilt – a Boolean specifying where the system has already been through the prebuild

process. This is used internally and is not user editable.

preProcessFunc – pointer to a MATLAB function which is called prior to the subsystem

being executed. It is the MATLAB dual to the 'preProcessFunc' code marker and

is used for simulating subsystems in MATLAB.

postProcessFunc – pointer to a MATLAB function which is called after the subsystem

has executed. It is the MATLAB dual to the 'postProcessFunc' code marker and is

used for simulating subsystems in MATLAB.

buildFunc – pointer to a MATLAB function which builds the subsystem on the target.

This is empty except for top level systems.

drawFunc – pointer to a MATLAB function which overrides drawing of the module in

figure windows. This is not yet used and is provided for future enhancements.

module – cell array of the internal modules used by the subsystem. Not user editable.

moduleName – cell array of internal module names. This is used to accelerate references.

Not user editator.

connection – cell array describing all of the connections in the subsystem. This array is

populated by calls to connect.m. Not user editable.

flattenOnBuild – a Boolean describing how this subsystem is treated during code

generation and building. When creating new module classes out of subsystems,

set .flattenOnBuild = 1. See Section 7.3 for an example.

targetSpecificInfo – a data structure populated by the build process. It is used to enable

real-time tuning on a target. Not user editable.

3.3.2. MATLAB Functions for Constructing Subsystems

All of the functions listed in Section 3.2.2 which are used to construct modules also apply to

subsystems. Additional commands for constructing subsystems are:

connect.m – creates a wiring connection between two pins in a subsystem.

get_module.m – extracts a module from a subsystem and returns the @awe_module

object.

These commands are documented in the Audio Weaver Matlab API.

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 53 of 147
(v01)

3.3.3. Internal Subsystem Functions

Each subsystem has a set of subfunctions that mirror the module functions described in 3.2.3.

Fortunately, for most subsystems, generic or generated versions of the functions can be used.

The table below describes the operation of each of the functions in the context of generated code.

MATLAB

Function Name

Target

Function Name

Purpose
*_module.m *_Constructor() This MATLAB code must be manually written as

described above. Modules are manually added,

configured, and connected.

The C code version of this function is automatically

generated. The function calls the base module

constructor function and then calls the

_Constructor() function for all internal modules.

The internal modules parameters are set according

to their values at build time.

.processFunc *_Process() Audio Weaver automatically generates the

MATLAB and C versions of these functions.

.setFunc *_Set() In all cases, this must be manually written.

.getFunc *_Get() In all cases, this must be manually written.

.bypassFunc *_Bypass() The generic function utilized by modules can also

be used here.

.preBuildFunc N/A Not needed. The existing pin propagation function

can propagate the information through subsystems.

3.3.4. Top-Level Systems

Thus far, we have been using the terms system and subsystem interchangeably. There is a slight

difference, though, that you need to be aware of. The highest level system object that is passed

to the build command must be a top-level system created by the function:

SYS=target_system(CLASSNAME, DESCRIPTION, RT)

The top-level system is still an @awe_subsystem object but it is treated differently by the build

process. The main difference is how the output pin properties are handled. In a top-level

system, the output pins properties are explicitly specified and not derived from pin propagation.

As an added check, the pin propagation algorithm verifies that the wires attached to a top-level

system's output pins match the properties of each output pin. In contrast, internal subsystems are

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 54 of 147
(v01)

created by calls to

SYS=awe_subsystem(CLASSNAME, DESCRIPTION)

and the type information for output pins is determined by pin propagation.

3.4. new_pin_type.m

This function returns a data structure representing a pin. The internal structure of a pin can be

seen by examining the pin data structure. At the MATLAB command prompt type:

new_pin_type

Be sure to leave off the trailing semicolon – this causes MATLAB to display the result of the

function call. We see:

ans =

 numChannels: 1

 blockSize: 32

 sampleRate: 48000

 dataType: 'float'

 isComplex: 0

 numChannelsRange: []

 blockSizeRange: []

 sampleRateRange: []

 dataTypeRange: {'float'}

 isComplexRange: 0

The first 5 fields of the data structure specify the current settings of the pin; the last 5 fields

represent the allowable ranges of the settings. The range information is encoded using the

following convention:

[] – the empty matrix indicates that there are no constraints placed on the range.

[M] – a single value indicates that the variable can only take on one value.

[M N] – a 1x2 row vector indicates that the variable has to be in the range M <=x <= N.

[M N step] – a 1x3 row vector indicates that the variable has to be in range M<=x<=N and that it

also has to increment by step. In MATLAB notation, the set of allowable values is [M:step:N].

By default, the new_pin_type.m function returns a pin with no constraints on the sampleRate,

blockSize, and numChannels. The dataType is floating-point and the data real.

Additional flexibility is built into the range information. Instead of just a row vector, the range

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 55 of 147
(v01)

can have a matrix of values. Each row is interpreted as a separate allowable range. For example,

suppose that a module can only operate at the sample rates 32 kHz, 44.1 kHz, and 48 kHz. To

enforce this, set the sampleRateRange to [32000; 44100; 48000]. Note the semicolons which

place each sample rate constraint on a new row.

Audio Weaver also interprets NaN’s in the matrix as if they were blank. For example, suppose a

module can operate at exactly 32 kHz or in the range 44.1 to 48 kHz. To encode this, set

sampleRateRange=[32000 NaN; 44100 48000].

The new_pin_type.m function accepts a number of optional arguments:

new_pin_type(NUMCHANNELS, BLOCKSIZE, SAMPLERATE, DATATYPE, ISCOMPLEX);

These optional arguments allow you to properties of the pin. For example, the call

new_pin_type(2, 32, 48000)

returns the pin

ans =

 numChannels: 2

 blockSize: 32

 sampleRate: 48000

 dataType: 'float'

 isComplex: 0

 numChannelsRange: 2

 blockSizeRange: 32

 sampleRateRange: 48000

 dataTypeRange: {'float'}

 isComplexRange: 0

This corresponds to exactly 2 channels with 32 samples each at 48 kHz. Note, that the pin type

is represented using a standard MATLAB structure. You can always change the type

information after new_pin_type.m is called. For example,

PT=new_pin_type;

PT.sampleRateRange=[32000; 44100; 48000];

The current values and ranges of values are both provided in Audio Weaver for a number of

reasons. First, the range information allows an algorithm to represent and validate the

information in a consistent manner. Second, the pin information is available to the module at

design time, allocation time, and at run-time. For example, the sample rate can be used to

compute filter coefficients given a cutoff frequency in Hz. Third, most modules in Audio

Weaver are designed to operate on an arbitrary number of channels. The module's run-time

function interrogates its pins to determine the number of channels and block size, and processes

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 56 of 147
(v01)

the appropriate number of samples.

Consider the look ahead limiter subsystem introduced in Section 5.3.2. It can be connected to

mono, stereo, or 5.1 channel signals and all of the wiring and buffer allocation will be

automatically handled. This generality allows you to design algorithms which operate on an

arbitrary number of channels with little added complexity.

Usage of new_pin_type.m is slightly more complicated than described above. In fact, the 5

arguments passed to the function actually specify the ranges of the pin properties and the current

values are taken as the first item in each range. For example, consider a module that can operate

on even block sizes in the range from 32 to 64. This is specified as:

new_pin_type([], [32 64 2])

ans =

 numChannels: 1

 blockSize: 32

 sampleRate: 48000

 dataType: 'float'

 isComplex: 0

 numChannelsRange: []

 blockSizeRange: [32 64 2]

 sampleRateRange: []

 dataTypeRange: {'float'}

 isComplexRange: 0

Note that the first argument, the number of channels, is empty. An empty matrix places no

constraints on the item. Notice also that the current blockSize equals the first value, 32, in the

range of allowable block sizes. Additional examples highlight other ways to use this function.

You can also specify that a pin can hold either floating-point or fract32 data. Pass in a cell array

of strings as the 4th argument to new_pin_type:

>> P=new_pin_type([], [], [], {'float', 'fract32'})

P =

 numChannels: 1

 blockSize: 32

 sampleRate: 48000

 dataType: 'float'

 isComplex: 0

 numChannelsRange: []

 blockSizeRange: []

 sampleRateRange: []

 dataTypeRange: {'float' 'fract32'}

 isComplexRange: 0

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 57 of 147
(v01)

Some modules do nothing more than move data around. Examples include the

interleave_module.m and the delay_module.m. These modules do not care about the data type,

only that it is 32-bits wide. The new_pin_type.m function uses the shorthand '*32' to represent

all 32-bit data type. This currently includes 'float', 'fract32', and 'int':

>> PT=new_pin_type([], [], [], '*32')

PT =

 numChannels: 1

 blockSize: 32

 sampleRate: 48000

 dataType: 'float'

 isComplex: 0

 numChannelsRange: []

 blockSizeRange: []

 sampleRateRange: []

 dataTypeRange: {'float' 'int' 'fract32'}

 isComplexRange: 0

3.5. add_pin.m

Pins are added to a module by the add_pin.m function. Each pin has an associated Pin Type as

described in Section 3.4. After creating the Pin Type, call the function

add_pin(M, USAGE, NAME, DESCRIPTION, TYPE, numPinArray)

for each input, output, or scratch pin you want to add. The arguments are as follows:

M - @awe_module object.

USAGE – string specifying whether the pin is an ‘input’, ‘output’, or 'scratch'.

NAME – short name which is used as a label for the pin.

DESCRIPTION – description of the purpose or function of the pin.

TYPE – Pin Type structure.

numPinArray – Distinguish between a scalar pin and a pin array. For scalar pin this

value will be 0 and for pin array this value will be size of the pin array.

M.inputPin, M.outputPin, and M.scratchPin are cell arrays that describe the pins. Each call to

add_pin.m adds an entry to one of these arrays, depending upon whether it is an input, output, or

scratch pin. For example, to determine the number of input pins that a module has, use

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 58 of 147
(v01)

length(M.inputPin)

or to print out all of the names of the output pins

for i=1:length(M.outputPin)

 fprintf(1,'%s\n', M.outputPin{i}.name);

end

Some processing functions require temporary memory storage. This memory is only needed

while processing is active and does not need to be persisted between calls. (On the other hand,

memory that needs to be persisted by a module between calls to the processing function appears

in the instance structure and has usage "state".) Allocating temporary memory and sharing it

between modules is accomplished by scratch pins. Scratch pins are added to a module via

add_pin.m with the USAGE argument set to 'scratch'. Scratch pins are typically not used by

audio modules, but are often required by subsystems. For subsystems, the routing algorithm

automatically determines scratch pins at build time.

In some cases, you want to add a pin to a subsystem that is of the same type as an internal

module. For example, the Hilbert subsystem uses the same pin type as the Biquad filter. This

can be achieved programmatically:

add_module(SYS, biquad_module('bq11'));

pinType=SYS.bq11.inputPin{1}.type;

add_pin(SYS, 'input', 'in', 'Audio Input', pinType);

add_pin(SYS, 'output', 'out', 'Audio output', pinType);

Rules to add_pin.m:

• Pins of the same direction should have no duplicate names.

• If the module has number of pins depends on the argument then the number of pins must

be passed as last argument to add_pin(). For example, interleave_module.m has input

pins depends on argument, NUMIN. Input pins must be added as below:

add_pin(M, 'input', 'in', 'Input signal', PT, NUMIN);

The module will display input pins as in1, in2 …. in<NUMIN> in the designer. Here ‘in’

is the base name.

• If the module has scalar pin along with pin array, then the scalar pin name must not

match the bas name of a pin array.

3.6. add_variable.m

M=add_variable(M, VAR)

Adds a single scalar variable to an @awe_module or @awe_subsystem object and returns the

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 59 of 147
(v01)

updated object. Arguments:

M - @awe_module or @awe_subsystem object to which to add the variable

VAR - @awe_variable object returned by awe_variable.m

Alternatively, you can construct the variable on the fly as:

M=add_variable(M, ARGS...)

where ARGS are arguments which get passed to @awe_variable. In this case, the arguments are

ordered as:

M=add_variable(M, NAME, TYPE, DATA, USAGE, DESCRIPTION, ISHIDDEN, ...

 ISCOMPLEX)

When called with no output arguments, as in

add_variable(M, VAR);

the input module M is updated in the calling environment.

After adding a variable to an audio module, it is a good idea to also specify its range and units.

The range field is used when drawing inspectors (sliders and knobs, in particular) and also for

validating variable assignments. The units string reminds the user of what units the variable

represents. You set these as:

M.variableName.range=[min max];

M.variableName.units='msec';

Note that after a variable is added to a module, it appears as a field within the module’s structure

and the name of the field equals the name of the variable. Attributes of an individual variable are

referenced using the “.” structure notation. Refer to Section 2.2 to see the correspondence

between variables in the MATLAB object and variables in the C type definition.

3.7. add_array.m

M=add_array(M, VAR)

Adds an array to an @awe_module or @awe_subsystem object and returns the updated object.

Arguments:

M - @awe_module or @awe_subsystem object to which to add the array

VAR - @awe_variable object.

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 60 of 147
(v01)

Alternatively, you can construct the array on the fly as:

M=add_array(M, ARGS...)

where ARGS are arguments which get passed to @awe_variable. In this case, the arguments are

ordered as:

M=add_array(M, NAME, TYPE, DATA, USAGE, DESCRIPTION, ISHIDDEN, ...

 ISCOMPLEX)

The size of the array is specified when it is first added. You can also subsequently change the

array size in the module's prebuild function. When doing so, you need to change the .size field

of the variable and then the data itself. For example, the state variables used by the Biquad

module are stored in a matrix of size 2 x numChannels. However, numChannels is not known

until the module is built and therefore code within the Biquad prebuild function is used to update

the array size:

M.state.size=[2 M.inputPin{1}.type.numChannels];

M.state=zeros(2, M.inputPin{1}.type.numChannels);

Audio Weaver supports 1 and 2 dimensional arrays. The 2 dimensional array representation is

maintained in MATLAB. On the target, however, a 2 dimensional array is flattened into a 1

dimensional array on a column by column basis. Both scalar and array variables are represented

as @awe_variable objects.

Array variables appear as pointers in the module instance structure. For example, an FIR filter

has separate arrays for coefficients and state variables:

add_variable(M, 'numTaps', 'int', L, 'const', 'Length of the filter');

M.numTaps.range=[1 5000 1];

M.numTaps.units='samples';

add_array(M, 'coeffs', 'float', [1; zeros(L-1,1)], 'parameter', 'Coefficient

array');

M.coeffs.arrayHeap='AE_HEAP_FAST2SLOW';

M.coeffs.arraySizeConstructor='S->numTaps * sizeof(float)';

add_variable(M, 'stateIndex', 'int', 0, 'state', 'Index of the oldest state

variable in the array of state variables');

M.stateIndex.isHidden=1;

% Set to default value here. This is later updated by the pin function

add_array(M, 'state', 'float', zeros(L, 1), 'state', 'State variable array');

M.state.arrayHeap='AE_HEAP_FASTB2SLOW';

M.state.arraySizeConstructor='ClassWire_GetChannelCount(pWires[0]) * S->numTaps

* sizeof(float)';

M.state.isHidden=1;

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 61 of 147
(v01)

The C type definition for this FIR filter is found in the file ModFIR.h:

typedef struct _awe_modFIRInstance

{

 ModuleInstanceDescriptor instance;

 int numTaps; // Length of the filter

 int stateIndex; // Index of the oldest state variable

 float* coeffs; // Coefficient array

 float* state; // State variable array

} awe_modFIRInstance;

Using indirect arrays enables arrays to have variable length and also to be placed in distinct

memory banks. This is last time is useful, for example, on the SHARC processor to enable

simultaneous memory reads.

3.8. add_pointer.m

add_pointer(M, NAME, CTYPE, [USAGE], [DESCRIPTION], [ISHIDDEN]))

Adds a pointer variable to an Audio Weaver module. A pointer variable is used to point to a data

structure which is defined outside of the module itself. Use pointers, for example, to point a data

structure used by a third party algorithm. When you add a pointer to an Audio Weaver module,

the pointer variable is added to the module’s instance structure but memory for it is not allocated.

You must separately allocate memory for the pointer using custom code in the module’s

constructor function.

Arguments:

M - @awe_module object to which to add the pointer variable.

NAME – name of the pointer variable. Must be a valid C variable name.

CTYPE – type definition which will be used by the variable. For example, ‘void *’ or

‘SparseItem *’. This string is used directly as the pointer type in the instance structure.

USAGE – how the variable is used. As before, this can be ‘parameter’, ‘state’, ‘derived’,

or ‘const’.

DESCRIPTION – optional short description string.

ISHIDDEN – optional Boolean which hides the variable from standard Matlab usage.

Note that you will not be able to examine the contents of pointer variables from Matlab since

Matlab is unaware of the data type of the variable.

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 62 of 147
(v01)

3.9. add_module.m

Modules are added to subsystems one at a time using the function

add_module(SYS, MOD)

The first argument is the subsystem while the second argument is the module (or subsystem) to

add. Once a module is added to a subsystem, it appears as a field within the object SYS. The

name of the field is determined by the module's name. Modules can be added to subsystems in

any order. The run-time execution order is determined by the routing algorithm.

As modules are added to the subsystem, they are appended to the .module field. You can use

standard MATLAB programming syntax to access this information. For example, to determine

the number of modules in a subsystem:

count=length(SYS.module);

Or, to print out the names of all of the modules in a subsystem:

for i=1:length(SYS.module)

 fprintf(1, '%s\n', SYS.module{i}.name);

end

3.10. connect.m

Creates a connection between two pins in a subsystem. The general form is:

connect(SYS, SRCPIN, DSTPIN);

where SRCPIN and DSTPIN specify the source and destination pins, respectively. Pins are

specified as strings to the connect.m command using the syntax:

moduleName.pinName

Consider the system shown below and contained within multiplexor_example.m.

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 63 of 147
(v01)

To connect the output of the sine generator1 to the second input of the multiplexor, use the

command:

connect(SYS, 'sine1.out', 'mult.in2');

The module names "sine1" and "mult" are obvious because they were specified when the

modules were created. The pins names may not be obvious since they appear within the

module's constructor function. To determine the names of a module's pins, you can either utilize

the detailed help function awe_help (recommended)

awe_help multiplexor_smoothed_module

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 64 of 147
(v01)

or have MATLAB draw the module

M=multiplexor_smoothed_module('foo');

draw(M)

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 65 of 147
(v01)

Several short cuts exists to simplify use of the connect.m command.

If the module has only a single input or output pin, then you need only specify the module name;

the pin name is assumed. Since the sine wave generator module in the multiplexor example has

only a single output pin, the example above reduces to:

connect(SYS, 'sine1', 'mult.in2');

Inputs and outputs to the subsystem are specified by the empty string. Thus,

connect(SYS, '', 'mult.in1');

connects the input of the system to the first input of the multiplexor. Similarly,

connect(SYS, 'mult', '');

connects the output of the multiplexor to the output of the system.

By default, the connect command performs rudimentary error checking. The function verifies

that the named modules and pins exist within the subsystem. At build time, however, exhaustive

checking of all connections is done. Audio Weaver verifies that all connections are made to

compatible input and output pins (using the range information within the pin type). You can

enable this exhaustive checking when a connection is made by supplying a 4th argument:

connect(SYS, 'mult', '', 1)

This is useful when debugging wiring failures that are revealed at build time.

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 66 of 147
(v01)

Output pins are permitted to fan out to an arbitrary number of input pins. Input pins, however,

can only have a single connection.

Audio Weaver is set up to handle several special cases of connections at build time. First, if an

input pin has no connections, Audio Weaver inserts a source module and connects it to the

unconnected input. Either a source_module.m (float) or source_fract32_module.m is added

based on the first input to the system5. If a module has an output pin without a connection,

Audio Weaver inserts a sink module based on the data type of the unconnected pin6

sink_module.m Floating-point data

sink_fract32_module.m Fixed-point data

sink_int_module.m Integer data

If the subsystem has a direct connection from an input pin to an output pin, then a copier_module

is inserted. If a module output fans out to N outputs of the subsystem, then N-1 copier modules

are inserted7.

3.11. get_variable.m and set_variable.m

Extract and assign individual @awe_variable objects within an audio module. This is needed

because of the object oriented nature of the Audio Weaver interface. When accessing a variable

"var" within a module "M", as in:

M.var

Audio Weaver returns the value of the variable, not the variable object itself. If you wish to gain

access to the actual variable object, use the call:

V=get_variable(M, NAME)

where

M – the @awe_module object.

NAME – a string specifying the name of the variable.

The function returns an @awe_variable object. For example, the following code gets the

underlying @awe_variable object for the "gain" variable of a smoothed scaler module:

5 Audio Weaver is guessing at the type of pin that needs to be connected.

6 This is always correct since the pin type is inherited from the module's output pin.

7 This is required since each output of the subsystem is stored in a separate buffer.

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 67 of 147
(v01)

M=scaler_smoothed_module('scaler');

V=get_variable(M, 'gain');

Similary, the set_variable.m command can be used to replace an existing variable with a given

@awe_variable object. "Replace" is used because the variable must already exist within the

audio module. The syntax for this command is:

M=set_variable(M, NAME, VAR)

where

M – the @awe_module object.

NAME – a string specifying the name of the variable.

VAR - @awe_variable object.

The get_variable.m and set_variable.m functions are rarely used in practice. You can always

access the internal fields of a @awe_variable object even when it is part of an audio module. For

example, to access the "range" field of the variable "gain", use:

range=M.gain.range;

get_variable.m and set_variable.m also apply to @awe_subsystem objects.

3.12. Module for AWE Designer

This section focus on the module browser information related to AWE Designer. Every module

must initialize the moduleBrowser and shapeInfo structure of the MATLAB module object.

Below is the example settings of downsampler_example_module.m module. Refer the section

3.2 for complete information of these structures.

M.moduleBrowser.path = 'Examples';

M.moduleBrowser.image = '../images/E.bmp';

M.moduleBrowser.searchTags = 'decimation';

M.shapeInfo.svgImage = '../../images/DownSampler.svg';

M.shapeInfo.size = [6 6];

.path – is the folder name in the AWE Designer browser tree.

.image – is the module browser image file to be used to display the module in AWE Designer

browser tree. If no image file is empty, then the default image file will be used by the Designer.

.searchTags – is the string to search in the Designer search filed to find the module.

.svgImage – is the module shape image file to be used by the designer to draw the shape in the

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 68 of 147
(v01)

layout area when the module is drag and dropped in the layout area. If this field is empty then the

default rectangle shape is used by the Designer.

.size – is the shape size in the Designer layout area.

When the module is generated by executing the make script, for example make_examples.m, the

XML file is generated which is used by the AWE Designer. XML file holds the complete

information about the module to AWE Designer, like browser image file path, svg image file

path for module shape, help document path, module arguments and other settings for AWE

Designer. The information in XML file is extracted from the module file from the

moduleBrowser and shapeInfo fields. Below is the example XML file of

downsampler_example_module.m module.

<designer>

 <module type='Examples' width='6' height='6'>

 <browsername>Downsampler Example</browsername>

 <legend></legend>

 

 <svgimage>../../images/DownSampler.svg</svgimage>

 <targetclasses>ModuleDownsamplerExample</targetclasses>

 <datatype>float,fract32,int</datatype>

 <searchtags>decimation</searchtags>

 <mfile>downsampler_example_module</mfile>

 <helpfile>../Doc/DownsamplerExample.html</helpfile>

 <examples></examples>

 <property propsheet = 'Build Settings'

name='allocationPriority' type='int' value='0' min = '0'/>

 <property propsheet = 'Build Settings' name='objectID'

type='int' value='' min = '1'/>

 <property propsheet = 'Build Settings' name='clockDivider'

type='int' value='' isValueEditable='0'/>

 <property propsheet = 'Build Settings' name='isTunable'

type='bool' value='1' min = '0'/>

 <property propsheet = 'Variables' name='D'

description='Decimation factor. 1 out of every D samples is output'

type='int' min='1' max='1024' step='1' isRangeEditable='1' value='2'

format='%g' hide='1' isComplex='0'/>

 <property propsheet = 'Arguments' name='D'

description='Decimation factor' type='int' value='2' format='%g' />

 <pin name='in' legend='in' usage='input' pos='left' show='0'

hide='0' />

 <pin name='out' legend='out' usage='output' pos='right'

show='0' hide='0' />

 Downsampler (or decimator) - keeps 1 out of every D samples

 <shape color='#000000' fill='#ffffff' style='0'>

 <poly>

 <point x='0' y='0' />

 <point x='0' y='6' />

 <point x='6' y='6' />

 <point x='6' y='0' />

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 69 of 147
(v01)

 </poly>

 </shape>

 </module>

</designer>

Every module must be instantiated in the make script with complete arguments. Otherwise the

arguments related information will not be extracted in to XML file and AWE Designer won’t

have access to arguments. For example downsampler_example_module.m require two

arguments, NAME and D (decimation factor). It must be instantiated as

MM{end+1}=downsampler_example_module('temp', 2); % 100%

instantiation

in the make_example.m script. Here ‘temp’ is the name and 2 is the default decimation factor.

Similarly lah_limiter_example_module.m require two arguments, NAME and MAXDELAY.

This must be instantiated as

MM{end+1}=lah_limiter_example_module('temp', 5); % 100%

instantiation

Here ‘temp’ is the name and 5 is the default max delay time.

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 70 of 147
(v01)

4. C Run-Time Environment

This section describes the portion of the C run-time environment used by audio modules. This

includes the module processing and constructor functions, memory allocation, and how the

modules interface to the Server running on the target.

Each audio module has an associated header file ModClassName.h containing a class definition,

and a source file ModClassName.c containing the associated class structure and functions. The

header and source files are generated by MATLAB, but it is important to understand their

contents and how all of the pieces fit together.

4.1. Data types and Structure Definitions

Let's begin by looking at the class definition for the smoothly varying scaler found in

ModScalerSmoothedExample.h:

typedef struct _ModuleScalerSmoothedExample

{

 ModuleInstanceDescriptor instance; // Common module header

 float gain; // Target gain

 float smoothingTime; // Smoothing time constant

 float currentGain; // Instantaneous gain applied

 float smoothingCoeff; // Smoothing coefficient

} ModuleScalerSmoothedExampleClass;

The first field "instance" is the common header used by all audio modules and the type

ModuleInstanceDescriptor is defined in

<AWE>\Include\Framework.h.

Framework.h contains the primary data types and definitions used by Audio Weaver. Most of

the definitions are used internally by the Server, but a few apply to audio modules.

4.1.1. Module Instance Structure

Following the instance header are all of the module specific variables. Only 8 types of module

variables are currently supported:

int – 32-bit signed integer

uint – 32-bit unsigned integer

float – 32-bit floating-point value

fract32 – 32-bit fractional in 1.31 format

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 71 of 147
(v01)

int * - pointer to an array of signed integers

uint * - pointer to an array of unsigned integers

float * - pointer to an array of floating-point values

fract32 * - pointer to an array of fractional values

You'll note that only 32-bit data types are currently supported. This is for simplicity, but may be

expanded in the future.

All scalar module variables must precede arrays in the instance structure. This is due to the

manner in which audio modules are allocated and initialized by the Server. The MATLAB

module generation scripts automatically reorder variables (using the function

awe_reorder_variables.m). Detailed description of awe_reorder_variables.m is found in Section

5.1.9.

The module instance descriptor is also defined within Framework.h:

typedef struct _ModuleInstanceDescriptor

{

 ModInstanceDescriptor instanceDescriptor;

 struct _LayoutInstance *pOwner;

 UINT packedFlags;

 float profile_time;

 WireInstance **pWires;

 void (*pProcessFunc)(void *pInstance);

}

ModuleInstanceDescriptor;

The module instance header is 8 words in length and contains the fields:

instanceDescriptor – 3 word data structure that allows the Server to keep track of the

module once it has been allocated on the target.

pOwner – points to the overall layout, or collection of audio modules.

packedFlag – a packed integer containing the number of input, output, and scratch pins,

as well as the current modules status.

profile_time – CPU profiling information. This is measured on a block-by-block basis

and smoothed by a first order filter. Time is measured in units of clock ticks,

where the resolution is platform dependent. Some platforms, such as the SHARC

and Blackfin, are cycle accurate.

pWires – pointer to an array of wires used by the module. Wires are ordered as inputs,

outputs, and scratch wires.

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 72 of 147
(v01)

pProcessFunc – pointer to the module's current run-time function. This points to the

processing function if the module is ACTIVE.

Access to the module instance fields is via macros defined in Framework.h. You should use

these macros since it enables us to change the underlying instance structure without breaking

existing modules. Let S be a pointer to an audio module. The following macros are provided:

ClassModule_GetWires(S) – returns a pointer to the array of wires associated with the

module. The wires are ordered as input wires, output wires, and then scratch wires.

ClassModule_GetNInWires(S) – returns the number of input wires.

ClassModule_GetNOutWires(S) – returns the number of output wires

ClassModule_GetNScratchWires(S) – returns the number of scratch wires

ClassModule_GetModuleState(S) – returns the module's run-time state. ACTIVE=0,

BYPASSED=1, MUTED=2, and INACTIVE=3.

4.1.2. Pins and Wires

A wire in Audio Weaver contains more than just audio samples. A wire is defined as:

typedef struct _WireInstance

{

 /** The basic instance data. */

 InstanceDescriptor instanceDescriptor;

 /** The pin descriptor describing this wire. */

 PinInstanceDescriptor *pPinDescriptor;

 /** The wire buffer. */

 Sample *buffer;

}

WireInstance;

The data type WireInstance describes a wire. To get a pointer to the data portion of the first

wire, use the macro:

Sample *buffer = (pWires[0]->buffer);

*buffer points to the buffer of audio samples. The data type Sample is a union of integer and

floating point values:

typedef union _Sample

{

 int iVal;

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 73 of 147
(v01)

 unsigned int uiVal;

 float fVal;

}

Sample;

Since Sample is a union, you must cast it to one of the possible data types:

(float *) W->buffer;

(int *) W->buffer;

(fract32 *) W->buffer;

(unsigned int *) W->buffer;

The fract32 data type is actually defined as int32. Providing the fract32 data type is for

convenience allowing the programmer to distinguish between integer and fractional values.

A wire can have an arbitrary number of interleaved channels and an arbitrary block size (number

of samples per channel). A wire with N channels and a block size B has a total of NB audio

samples. The samples are ordered as:

Channel 0, Sample 0

Channel 1, Sample 0

Channel 2, Sample 0

...

Channel N-1, Sample 0

Channel 0, Sample 1

Channel 1, Sample 1

Channel 2, Sample 1,

 ...

 ...

Channel N-1, Sample B-1

The items in the wire's pin descriptor are accessed via macros:

ClassWire_GetChannelCount(W) – returns the number of channels in the wire.

ClassWire_GetBlockSize(W) – returns the block size of the wire.

ClassWire_GetNumSamples(W) – returns the total number of samples in the wire. This

equals the number of channels times the block size.

ClassWire_GetSampleRate(W) – returns the sample rate of the data in the wire. This is

used by design functions, such as filter coefficient generation, that depend upon

the sample rate of the data. The sample rate is in Hz.

A pin descriptor structure can be shared by multiple wires as long as the number of channels,

block size, and sample rate are the same. Allocating and assigning pin descriptors is handled by

MATLAB when a system is being built.

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 74 of 147
(v01)

You'll note that the pin descriptor does not specify the type of data (float, int, or fract32)

contained in the wire. This allows a wire containing floating-point data to be reused for integer

data as long as the number of channels, block size, and sample rate are identical.

4.1.3. Examples

The absolute value module has a single input and output pin, and can handle an arbitrary number

of channels, block size, and sample rate. S is a pointer to the module instance. The processing

code is:

void ModuleAbs_Process(void *pInstance)

{

 ModuleAbsClass *S = (ModuleAbsClass *)pInstance;

 WireInstance **pWires = ClassModule_GetWires(S);

 Vec_Abs((float *)pWires[0]->buffer, 1,

 (float *)pWires[1]->buffer, 1,

 ClassWire_GetNumSamples(pWires[0]));

}

where

(float *) pWires[0]->buffer points to the buffer of input samples.

(float *) pWires[1]->buffer points to the buffer of output samples

ClassWire_GetNumSampels(pWires[0]) is the total number of samples in the input wire.

Vec_Abs() is an optimized vector function for computing the absolute value.

A second example is the processing function found ModScalerN.c. This module has a single

input pin with multiple channels. Each channel is scaled by a separate gain. The processing

function is:

void ModuleScalerN_Process(void *pInstance)

{

 ModuleScalerNClass *S = (ModuleScalerNClass *)pInstance;

 WireInstance **pWires = ClassModule_GetWires(S);

 UINT blockSize = ClassWire_GetBlockSize(pWires[0]);

 UINT numChannels = ClassWire_GetChannelCount(pWires[0]);

 UINT channel;

 float *dst;

 float *src;

 src = (float *) pWires[0]->buffer;

 dst = (float *) pWires[1]->buffer;

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 75 of 147
(v01)

 for(channel=0;channel<numChannels;channel++)

 {

 Vec_Scale(src+channel, numChannels,

 dst+channel, numChannels,

 S->gain[channel], blockSize);

 }

}

This module has a multichannel input and output pin. At the start of the processing function, the

number of channels and block size are determined as well as pointers to the input and output

buffers. The module then loops over each channel scaling it by the appropriate scale factor from

the gain[] array. The arguments to the Vec_Scale function are:

src+channel – pointer to the buffer of input data.

numChannels – stride for the input data.

dst+channel – pointer to the buffer of the output data

numChannels – stride for the output data

S->gain[channel] – scale factor for a particular channel.

blockSize – number of samples to scale.

You can clearly see that the data is interleaved based on the offset to the start of the src and dst

data as well as the strides.

Both of the module examples use a set of "vector" functions to perform the actual computation.

It is possible to perform the computation within the module's processing function – many

modules do this. For some modules, however, we have chosen to use vector functions since

smaller functions may be more easily optimized in assembly and a single function may be reused

by multiple modules. For example, Vec_Scale() is used by the scaler_module.m,

scalern_module.m, and scaler_db_module.m. Thus, by optimizing a single function vector for a

target processor we obtain 3 optimized modules.

4.2. Class Object and Constructor Functions

The module constructor function is called in response to a create_module command sent from

the Server to the target. A module's constructor function is called once per module instance and

is responsible for allocating memory for the module and copying arguments from the

create_module command into the instance structure.

The operation of the constructor function hinges on information within the module's class

structure. All audio modules of the same class share a single module class structure. Thus, if a

target contains 100 different classes of audio modules, there will be 100 class structures defined.

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 76 of 147
(v01)

The class structure is defined in Framework.h as:

/** Class descriptor for audio modules. */

typedef struct _ModClassModule

{

 /** The basic class data. */

 ModClassDescriptor modClassDescriptor;

 /** The number of construction module parameters. */

 UINT nPackedParameters;

 /** Pump function for the module. */

 void (*pProcessFunc)(void *pInstance);

 /** Bypass function for the module. */

 void (*pBypassFunc)(void *pInstance);

 /** Set function. */

 UINT (*pSet)(void *pInstance, UINT mask);

 /** Get function. */

 UINT (*pGet)(void *pInstance, UINT mask);

/** Set State function. */

 void (*pSetState)(void *pInstance, UINT32 state);

}

ModClassModule;

The first item of type ModClassDescriptor is defined as:

typedef struct _ModClassDescriptor

{

 /** Unique ID of the class - set at compile time. */

 UINT classID;

 struct _ModInstanceDescriptor *(*Constructor)(

 int * FW_RESTRICT retVal,

 UINT nIO,

 WireInstance ** FW_RESTRICT pWires,

 size_t argCount,

 const Sample * FW_RESTRICT args);

}

ModClassDescriptor;

Let's look at each of these fields more closely.

classID – is a unique integer that identifies the module on the target.

When the target is asked to create a scaler_module.m, it is asked to create a module with a

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 77 of 147
(v01)

specific integer class ID. In order to ensure that all classID's are unique, they are stored as

offsets in the file classids.csv. When asked to construct a module, the target searches the table of

module class pointers looking for the specified classID. If there is a match, then the Constructor

function, also contained within ModClassDescriptor is called.

Constructor() - pointer to the module's constructor function.

The constructor function takes a specific set of arguments:

Constructor(int * FW_RESTRICT retVal,

 UINT nIO,

 WireInstance ** FW_RESTRICT pWires,

 size_t argCount,

 const Sample * FW_RESTRICT args);

Now returning to the other fields in ModClassModule. The modClassDescriptor is followed by:

 UINT nPackedParameters;

This integer specifies the number of constructor arguments required by the module. Two

separate values are packed into this 32-bit integer and these are accessed via separate macros:

ClassMod_GetNPublicArgs(packed) – returns the number of public arguments that the

module requires. The number of public arguments equals the number of scalar

variables that must be sent from the Server to the Constructor() function.

ClassMod_GetNPrivateArgs(packed) – returns the number of private arguments required

by the module. The private arguments are not sent by the Server but must be

separately managed by the Constructor function. Private arguments typically hold

pointers to array variables.

The total size of a module's instance structure equals sizeof(ModClassModule) + # of public

words + # of private words.

The remaining items in the module class structure are pointers to module functions.

pProcessFunc – pointer to the module's processing function. Called when the module is

in ACTIVE mode.

pBypassFunc – pointer to the module's bypass function. Called when the module is in

BYPASSED mode.

pSet – pointer to the module's set function. This function is called after the Server

updates one of the module's variables. This function is used to implement custom

design functions on the target.

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 78 of 147
(v01)

pGet – pointer to the module's get function. This function is called prior to reading one

of the module's instance variables by the Server.

pSetState – pointer to the module’s set module state function. This function is called prior

to change the state of the module. Most of the module’s will have this field as

NULL.

A module must provide processing and bypass functions; all other functions are optional.

Let's examine the class structure for the biquad_module.m. This module implements a 5

multiply second order IIR filter. The module's class structure defined in ModBiquad.c is:

const ModClassModule ClassModule_Biquad =

 {

#ifdef AWE_STATIC_CODE

 { CLASSID_ModuleBiquad, ModuleBiquad_Constructor },

#else

 { CLASSID_ModuleBiquad, NULL },

#endif

 ClassModule_PackArgCounts(5, 1), // (Public words, private

words)

 awe_modBiquad_Process, // Processing function

 IOMatchUpModule_Bypass, // Bypass function

#ifndef AWE_NO_SETGET_FUNCTIONS

 0, // Set function

 0, // Get function

#else

 0, // Set function

 0, // Get function

#endif

 0, // Set State function

 };

The CLASSID_ModuleBiquad equals a base value plus an offset:

CLASS_ID_MODBASE + 13

The offset is defined in the file classids.csv:

Biquad,13

The module has a custom constructor function, ModuleBiquadConstructor(), and a total of 5

public instance variables and 1 private instance variable. Looking at the module's instance

structure, we see:

typedef struct _ModuleBiquad

{

 ModuleInstanceDescriptor instance;

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 79 of 147
(v01)

 float b0;

 float b1;

 float b2;

 float a1;

 float a2;

 float* state;

} ModuleBiquadClass;

The 5 public variables are the filter coefficients: b0, b1, b2, a1, and a2. The private variable is

the pointer to the array of state variables. The Biquad module operates on multichannel signals

and allocates two state variables per channel. The Biquad module utilizes the processing

function awe_modBiquad_Process(), the bypass function IOMatchUpModule_Bypass(), and

does not define a Get or Set function.

The module constructor function first allocates memory for the instance structure, then sets

public variables using supplied values, and finally, allocates memory for any arrays. Constructor

functions all have a similar structure exemplified by the constructor for the Biquad module.

Starting with the function arguments:

ModInstanceDescriptor *ModuleBiquad_Constructor(int * FW_RESTRICT

retVal,

 UINT nIO,

 WireInstance ** FW_RESTRICT pWires,

 size_t argCount,

 const Sample * FW_RESTRICT args)

{

 ModuleBiquadClass *S = (ModuleBiquadClass *)

 BaseClassModule_Constructor(&ClassModule_Biquad, retVal, nIO,

pWires, argCount, args);

 if (S == NULL)

 {

 return 0;

 }

 if ((S->state = (float *)

awe_fwMalloc(ClassWire_GetChannelCount(pWires[0]) * 2 * sizeof(float),

 AE_HEAP_FAST2SLOW, retVal)) == 0)

 {

 // Error code is in *retVal

 return 0;

 }

*retVal = E_SUCCESS;

return ((ModInstanceDescriptor *) S);

}

The function arguments are:

retVal – pointer to the function's error return value. If successful, the function sets

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 80 of 147
(v01)

*retVal = E_SUCCESS.

nIO – a packed integer specifying the number of input, output, and scratch wires used by

the module.

pWires – pointer to the array of wires used by the module.

argCount – total number of arguments supplied to the constructor. Typically, the

constructor arguments are computed by MATLAB and supplied to the

create_module Server function.

args – pointer to the list of function arguments. The function arguments can be either

integer or floating-point values and are specified as a union. The constructor

function must know whether each argument is an integer or floating-point value.

arg[0].iVal is the first argument as an integer; arg[0].fVal is the first argument as

a floating-point value; arg[0].uiVal is the first argument as an unsigned integer.

The first responsibility of the Constructor function is to call BaseClassModule_Constructor().

This function does several things:

Allocates memory for the module's instance structure.

Verifies that argCount equals the number of public instance variables specified in the

module's class structure.

Copies the initial values of the public variables from args[] to the variables at the start of

the instance structure. (This method of initializing module variables requires that

the public module variables be located contiguously at the start of the instance

structure.)

Sets the pWires and packedFlags fields of the ModuleInstanceDescriptor.

Configures the module for ACTIVE mode.

The Constructor function next allocates memory for the state array;

if ((S->state = (float *)

awe_fwMalloc(ClassWire_GetChannelCount(pWires[0]) * 2 * sizeof(float),

AE_HEAP_FAST2SLOW, retVal)) == 0)

 {

 // Error code is in *retVal

 return 0;

 }

Note that the size of the array is computed based on the number of channels in the first input

wire. The function awe_fwMalloc() allocates memory from one of Audio Weaver's memory

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 81 of 147
(v01)

heaps. The heap is specified by the second argument: AE_HEAP_FAST2SLOW and user can

find all the macros defined in Framework.h.

Lastly, the Constructor function sets the return value and returns a pointer to the allocated and

initialized object:

*retVal = E_SUCCESS;

return ((ModInstanceDescriptor *) S);

The instance pointer is cast to a common ModInstanceDescriptor return type.

The Biquad module was used as an example to illustrate the constructor function because it

requires an array to be allocated. If the Constructor function pointer in the module's class

structure is set to NULL, then the generic module constructor is called. The generic constructor

simply calls BaseClassModule_Constructor() and is sufficient for modules that do not require

additional memory allocation outside of the instance structure or other custom initialization. The

generic constructor is sufficient for a large number of modules and reduces the code size of the

target executable.

4.3. Memory Allocation using awe_fwMalloc()

Dynamic memory allocation is accomplished in Audio Weaver by the function awe_fwMalloc().

To avoid memory fragmentation, memory can only be allocated but never individually freed.

You can only free all memory completely using the destroy command and then start again.

The memory allocation function is declared as:

void *awe_fwMalloc(size_t size, UINT heapIndex, int *retVal);

All memory allocation in Audio Weaver occurs in units of 32-bit words. The first argument to

awe_fwMalloc() specifies the number of 32-bit words to allocate.

The second argument, heapIndex, specifies which memory heap should be used for allocation.

Audio Weaver provides 3 heaps and the heaps match the memory architecture of the SHARC

processor. There are two separate internal heaps – traditionally referred to as "DM" and "PM"

on the SHARC – which are placed in different memory blocks; and a large heap in external

memory. Having separate internal memory heaps is required to obtain optimal performance

from the SHARC. For example, an FIR filter implemented on the SHARC processor requires

that the state and coefficients be in separate memory blocks. On the Blackfin with cache

enabled, the heaps specifiers are irrelevant.

Audio Weaver refers to the heaps as "FAST", "FASTB", and "SLOW". The heapIndex

argument is set using #define's in Framework.h. In the simplest case, you specify one of the

following:

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 82 of 147
(v01)

AWE_HEAP_FAST – fast internal memory. Defined as 1.

AWE_HEAP_FASTB – a second internal memory heap located in a different block of

memory than AWE_HEAP_FAST. Defined as 2.

AWE_HEAP_SLOW – slower memory; usually external. Defined as 3.

The heapIndex argument can encode several different heaps one nibble (4-bits) at a time. Set the

low 4 bits of heapIndex to the heap you want to allocate memory from first; then set bits 4 to 7 to

the next heap; and so forth. For example, if you want to allocate memory from

AWE_HEAP_FAST and then overflow into AWE_HEAP_SLOW, set the heapIndex argument

to:

AWE_HEAP_FAST | (AWE_HEAP_SLOW << 4)

Several variations are already defined for you.

#define AWE_HEAP_FAST2SLOW (AWE_HEAP_FAST | (AWE_HEAP_FASTB << 4) |

(AWE_HEAP_SLOW << 8))

Allocate in the FAST heap first. If this fails, then allocate in FASTB. Finally, if this fails, then

allocate SLOW external heap.

#define AWE_HEAP_FASTB2SLOW (AWE_HEAP_FASTB | (AWE_HEAP_SLOW << 4))

Allocate in FASTB. If this fails, then allocate from the SLOW heap.

Most modules supplied with Audio Weaver take advantage of this overflow behavior to

smoothly transition from internal to external memory once the heaps have filled up.

4.4. Module Function Details

Each audio module has a set of 5 functions associated with it. This section describes the

arguments to each of the functions.

4.4.1. Constructor Function

This function is usually generated by MATLAB but at times it needs to be hand written –

especially if the module does more than just allocate memory. Audio Weaver names the

constructor function using the convention

awe_modCLASSNAMEConstructor()

where CLASSNAME is the module class. The function allocates memory for the module from

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 83 of 147
(v01)

the heaps and then returns a pointer to the newly created object. The constructor function is

declared as:

ModInstanceDescriptor *awe_modCLASSNAMEConstructor(

int * FW_RESTRICT retVal,

UINT nIO,

WireInstance ** FW_RESTRICT pWires,

size_t argCount,

const Sample * FW_RESTRICT args)

The return type ModInstanceDescriptor is a common data structure which starts off all audio

modules. The function arguments are:

*retVal – integer return value. The constructor should set this to E_SUCCESS (=0) upon

successful completion. The file Errors.h has a complete list of error codes to

choose from.

nIO – packed integer specifying the number of input, output, scratch, and feedback wires.

Each number is packed into 8-bits as follows:

INPUT + (OUTPUT >> 8) + (SCRATCH >> 16) + (FEEDBACK >> 24)

Several macros are provided in Framework.h to extract the wire counts:

#define GetInputPinCount(x) (x & 0xff)

#define GetOutputPinCount(x) ((x >> 8) & 0xff)

#define GetScratchPinCount(x) ((x >> 16) & 0xff)

#define GetFeedbackPinCount(x)((x >> 24) & 0xff)

#define GetWireCount(x) (((x >> 24) & 0xff) + ((x >> 16) & 0xff)

 + ((x >> 8) & 0xff) + (x & 0xff))

pWires – a pointer to an array of wire pointers. The wires are ordered as input, output,

and scratch.

argCount – number of optional arguments supplied in the Sample array.

args – array of optional arguments. This array is of type Sample which is union:

typedef union _Sample

{

 int iVal;

 unsigned int uiVal;

 float fVal;

}

Sample;

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 84 of 147
(v01)

Each argument can thus be a floating-point, or signed or unsigned integer value.

The module constructor function should first call

ModInstanceDescriptor *BaseClassModule_Constructor(

 const ModClassModule * FW_RESTRICT pClass,

 int * FW_RESTRICT retVal,

 UINT nIO,

 WireInstance ** FW_RESTRICT pWires,

 size_t argCount,

 const Sample * FW_RESTRICT args);

The first argument, pClass, is a pointer to the class object for the module under construction.

The remaining arguments are identical to the Constructor arguments. For example, in

ModPeakHold.c, we have

awe_modPeakHoldInstance *S = (awe_modPeakHoldInstance *)

BaseClassModule_Constructor(&awe_modPeakHoldClass, retVal,

nIO, pWires, argCount, args);

The BaseClassModule_Constructor allocates memory for the module instance structure and wire

pointer array used by the module. The function also initializes the module instance variables by

copying argCount words from the args array starting to the first instance variable in the structure.

The class structure awe_modPeakHoldClass contains the entry

ClassModule_PackArgCounts(5, 2), // (Public words, private words)

Thus an instance of a peak hold module has a total of 7 variables with the first 5 being set at

construction time and the last 2 used internally (or arrays) argCount must then equal 5 and

BaseClassModule_Constructor checks for this. The remaining two variables in the instance

structures are pointers to arrays which are separately initialized by the constructor function.

The final step performed by BaseClassModule_Constructor is to add the newly created module

instance to the linked list of objects on the target and then return a pointer to the module

instance.

After calling BaseClassModule_Constructor, the module constructor performs any other

initialization that is needed. This may include initializing indirect array variables, like in the

ModPeakHold.c example. When done, the constructor function sets the return error value in

*retVal and returns a pointer to the created module instance.

The module constructor function is typically called by the framework in response to a message

received from the PC over the tuning interface or from a message stored in a file system. After a

module constructor function is called, the framework checks if the module has an associated Set

function. If so, the Set function is called with a mask of 0xFFFFFFFF. Thus there is no need to

manually call the Set function within the Constructor. The framework takes care of this.

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 85 of 147
(v01)

4.4.2. Processing Function

The processing function has the signature

void awe_modPeakHoldProcess(void *pInstance)

The function only gets a single argument which is a pointer to the module instance. This is first

cast to the appropriate module instance data type. For example

awe_modPeakHoldInstance *S = (awe_modPeakHoldInstance *)pInstance;

Using macros defined in Framework.h, the processing function can obtain a pointer to the list of

wires used by the module

WireInstance **pWires = ClassModule_GetWires(S);

The number of input wires

int numInWires = ClassModule_GetNInWires(S);

The number of output wires

int numOutWires = ClassModule_GetNOutWires(S);

The number of scratch wires

int numScratchWires = ClassModule_GetNScratchWires(S);

And the current run-time state of the module

int state = ClassModule_GetModuleState(S)

where

MODULE_ACTIVE = 0

MODULE_BYPASS = 1

MODULE_MUTE = 2

MODULE_INACTIVE = 3

Note, the processing function is only called when the state is active so checking the state is

meaningless in the processing function.

The wire buffers are ordered as input, output, and scratch wires. Each wire has certain properties

that you can query using macros:

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 86 of 147
(v01)

ClassWire_GetBlockSize(W)

ClassWire_GetChannelCount(W)

ClassWire_GetSampleRate(W)

ClassWire_GetNumSamples(W)

where the last macro returns the total number of samples in the wire and equals blockSize x

numChannels.

Each wire contains a pointer to its data samples in the →buffer field. buffer is defined as the

union Sample and must be cast to a pointer of the appropriate type. For example,

(float *) (pWires[0]->buffer)

The processing function then performs the audio processing and writes the result into the output

wire buffers. Local state variables in the instance structure are updated, as needed.

Note that the processing function should never overwrite the data contained in the input wires; it

may be used by other modules.

The processing function does not return an error code. If you need to track error conditions, do

this by adding an error code to the instance structure and then tracking it in the inspector.

4.4.3. Set Function

This function implements a module's control functionality and typically converts high-level

variables to low-level variables. The PeakHold module has the function signature

UINT awe_modPeakHoldSet(void *pInstance, UINT mask)

The first argument is a pointer to the module instance structure. This needs to be cast to a

pointer of the appropriate type:

awe_modPeakHoldInstance *S = (awe_modPeakHoldInstance *)pInstance;

Once you have a pointer to the module instance, you have full access to the module wires using

the macros defined in Framework.h. This is useful, for example, when determining the sample

rate or the block size of the module.

The second argument to the Set function is a bit mask that specifies which module variable(s)

have changed. The bit mask is set by the Server when module variables are updated while

tuning. The bit mask may also be set by control code running on the target. Use of the bit mask

is optional and is only really necessary when the module writer needs to distinguish between

heavy duty changes requiring significant amounts of computation and lightweight changes.

In the bit mask, bit N is set when the Nth module variable is set. The bit counting includes the 8

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 87 of 147
(v01)

word module instance header and thus the first tunable module variable is numbered 8. The

module header file contains a set of #define's indicating the bit value for each variable. For

example, ModPeakHold.h contains

#define MASK_PeakHold_Reset 0x00000100

#define MASK_PeakHold_attackTime 0x00000200

#define MASK_PeakHold_decayTime 0x00000400

#define MASK_PeakHold_decayCoef 0x00000800

#define MASK_PeakHold_attackCoef 0x00001000

#define MASK_PeakHold_peakHold 0x00002000

#define MASK_PeakHold_peakDecay 0x00004000

A few more things to keep in mind regarding masks. When an array variable is set, the bit mask

corresponding to the array is set as expected. However, the Set function is not told which portion

of the array has been changed. Finally, since the mask is only 32 bits in length, it is possible to

run out of unique bits if the instance structure is very long. The high bit of the mask, bit 31, has

special meaning. When this bit is set, it indicates that at least one of the high order instance

variables has changed. However, you don't know precisely which one.

4.4.4. Get Function

This function is rarely used in practice and translates low-level variables to higher-level

variables. This function has the same signature as the Set function

UINT awe_modClassNameGet(void *pInstance, UINT mask)

When called, the function should update instance variables and can use the mask argument to

determine which variables should be updated.

4.4.5. BypassFunction

This function implements a module's bypass functionality. The function signature is identical to

the processing function

 void awe_modClassNameBypass(void *pInstance)

There are several standard bypass functions defined in ModCommon.h and may be used by

modules.

IOMatchModule_Bypass() – Works with modules that have the same number of input as

output wires. It copies the data from the Nth input wire to the Nth output wire. It

assumes (and does not check) that all input and output wires have the exact same

number of samples.

IOAcrossModule_Bypass() – Works with modules that have a single input wire and

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 88 of 147
(v01)

single output wire. The wires may have a different number of channels, though.

Let INCOUNT and OUTCOUNT represent the number of channels in the input

and output wires, respectively. The function copies the first min(INCOUNT,

OUTCOUNT) channels across one at a time from input to output. If

OUTCOUNT > INCOUNT, then the remaining output channels are set to 0.

IOAllOnesModule_Bypass() – Sets all samples in the output wire to floating point 1.0.

This is used by some dynamics processors which compute time-varying gains.

IOMatchUpModule_Bypass() – Suitable for modules that have an arbitrary number of

input and output wires. The function starts with the first output wire and looks for

the first input wire that matches it in terms of block size and number of channels.

If a match is found, the data from that input wire is copied to the output wire, and

this input wire is no longer used for subsequent matches. If not match is found

for a particular output wire, then all samples are set to 0.0. This process repeats

for all output wires.

If a module's m-file does not specify a bypass function, then the code generator assigns

IOMatchUpModule_Bypass() by default.

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 89 of 147
(v01)

5. Generating Module Libraries

This section provides further details on module generation. We begin by discussing template

substitution, the underlying process by which the generated .c and .h files are created. The

section also documents MATLAB commands that are related to module generation. Many of the

commands shown were used in previous examples and are fully documented here.

The main phases in creating an audio module library are:

1. For each audio module in the library

a. Add code markers

b. Generate the module's .c and .h files using template substitution

2. Generate the combined schema file describing all of the modules in the library

3. Translate the schema information into a C data structure that can be compiled and

included with the DLL.

4. Compile the generated files and create an audio module dynamic link library (DLL).

Steps 1 and 3 are automated using the awe_generate_library.m command. Many other

MATLAB functions are internally called. Only a few other functions are documented here to

help you better understand the code generation process. Step 4 is done separately in

VisualStudio and described in Section 6.

5.1. awe_generate_library.m

awe_generate_library(MM, DIR, LIBNAME, USESDLLS, GENDOC)

This is the primary function for generating an audio module library. It generates sources files for

all of the modules in the library. Arguments:

MM – cell array of audio module structures.

DIR – base directory in which the generated files should be placed. Files are written here

and in several other subdirectories.

LIBNAME – string specifying the name of the library. For example, 'Advanced'.

USESDLLS – structure specifying other module libraries that the newly built library

depends upon. A library has a dependencies when it internally utilizes a module

contained in another library. By default, USESDLLS=[] and the library is

independent of others.

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 90 of 147
(v01)

GENDOC – integer indicating whether module documentation should be generated. By

default, GENDOC=0 and no documentation is generated. If GENDOC=1, then a

single document is created for the entire module library. If GENDOC=2, then a

separate document is created for each audio module.

5.1.1. Creating the Cell Array of Modules

The argument, MM, is a cell array populated with modules to be placed in the final library. For

example, it might contain:

MM=cell(0,0);

MM{end+1}=downsampler_example_module('temp');

MM{end+1}=fader_example_fract32_module('temp');

MM{end+1}=fader_example_module('temp');

MM{end+1}=lah_limiter_example_module('temp');

MM{end+1}=peak_hold_example_fract32_module('temp');

MM{end+1}=peak_hold_example_module('temp');

MM{end+1}=scaler_example_module('temp');

MM{end+1}=scaler_smoothed_example_module('temp');

5.1.2. Specifying Dependencies

USESDLLS is a cell array of structures that specifies dependencies. Each structure contains the

fields:

.MM – cell array of audio modules in the library.

.str – library name.

To achieve automation, each audio module library supplied with Audio Weaver has a master

function which generates the library. For example, the Advanced module library uses the script

make_advancedmodulepack.m. The script is designed so that if you request output arguments,

as in

[MM, NAME]=make_advancedmodulepack;

the function will not build the library but will instead return a cell array of modules in MM and

the name of the module library in NAME. You should follow this convention when creating

your own custom module libraries. This allows you to specify dependencies in a straightforward

manner. For example, the make_examples.m script is dependent upon 3 other libraries:

[DependMM, DependName]=make_standardmodulepack(0);

USESLIB{1}.MM=DependMM;

USESLIB{1}.str=DependName;

[DependMM, DependName]=make_deprecatedmodulepack(0);

USESLIB{2}.MM=DependMM;

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 91 of 147
(v01)

USESLIB{2}.str=DependName;

[DependMM, DependName]=make_advancedmodulepack(0);

USESLIB{3}.MM=DependMM;

USESLIB{3}.str=DependName;

 If you try to build a library and do not properly account for all dependencies, then

awe_make_library.m will report an error. For example, suppose that you try and build the

examples library but eliminate the dependency on the Standard/Deprecated libraries, you'll see:

Module library has unsatisfiable or circular dependencies.

Modules with dependencies that could not be resolved:

FaderExample

 Missing ScalerSmoothed

LAHLimiter

 Missing AGCLimiterCore

 Missing AGCMultiplier

 Missing MaxAbs

The error message indicates that the FaderExample module has a dependency on

ScalerSmoothed and that ScalerSmoothed is not in the dependency list. Similarly, LAHLimiter

has 3 unsatisfied dependencies.

5.1.3. Specifying the Output Directory

The argument DIR to awe_generate_library.m specifies the directory in which to generate the

modules. There are different ways to specify the directory including hard coding it.

Often it is useful to specify the directory relative to the location of the master library make script.

The following MATLAB code, contained in make_examples.m, shows how to determine the

location of make_examples.m and then pull off the lowest level directory. make_examples.m is

located at:

<AWE>\ModulesLib\Examples\matlab\

The output directory is set to

<AWE>\ModulesLib\Examples\

by the code below.

MFILE=mfilename('fullpath');

[pathstr, name]=fileparts(MFILE);

% Remove the last directory level

ind=find(pathstr == filesep);

ind=max(ind);

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 92 of 147
(v01)

DIR=pathstr(1:ind-1);

5.1.4. Generated Files

Let DIR be the base directory for the audio module library and let 'Examples' be the name of the

library. awe_generate_library.m creates the following files:

<DIR>\Examples.h – Header file containing extern definitions for each module class

object. It also has macros defining the entire list of modules and all dependencies.

<DIR>\Examples.sch – Overall schema file for the library.

<DIR>\ExamplesSchema.cpp – Compiled schema file.

<DIR>\Doc – Location of generated documentation

<DIR>\Include – Location of generated module include files

<DIR>\matlab – Location of the module m-files. This also contains the master library

make script.

<DIR>\matlab\code – Suggested location for the inner code pieces.

<DIR>\matlab\process – Suggested location of the MATLAB versions of the processing

functions.

<DIR>\matlab\test – Suggested location of MATLAB test scripts which validate the

operation of the modules.

<DIR>\Source – Location of the generated module source files.

<DIR>\xml – Module XML file for AWE Designer, explained in section 3.12.

5.1.5. SchemaBuilder.exe

You'll notice this executable within the Audio Weaver Bin directory. This executable compiles

the schema information. That is, it takes a .sch file and compiles into a .cpp file. The .cpp file is

then included in the project for building the module DLL. SchemaBuilder.exe is automatically

called by awe_generate_library.m and there is no need to call it separately.

5.1.6. AWE_INFO.buildControl

The global variable AWE_INFO contain the structure .buildControl which controls the library

generation process. AWE_INFO.buildControl contains many fields which are used internally.

We point out the user settable values.

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 93 of 147
(v01)

AWE_INFO.buildControl.combineSourceFiles

This Boolean specifies whether each audio module should be placed into a separate source file.

By default, combineSourceFiles=0 and each module is written to a separate file.

AWE_INFO.buildControl.indentSourceFiles

This Boolean specifies whether the source code should be formatted after generation using the

executable indent.exe. Formatting the code regularizes identing, line breaks, etc. By default,

indentSourceFiles=0. Formatting the source code significantly slows down the module

generation process.

5.1.7. Setting the Audio Module Search Path

When you are developing a custom audio module, you must add the base module directory to the

Audio Weaver module search path. It is not enough to merely modify your MATLAB path. To

add a directory to the Audio Weaver module search path, use the command

add_module_path(DIR)

The command adds the directory

<DIR>\matlab

to the MATLAB search path; this directory has to exist. It then optionally adds

<DIR>\matlab\test

<DIR>\matlab\process

if these directories exist. In addition, the function modifies the global variable

AWE_INFO.buildControl.modulePath

to include the new directory. This global variable is used when searching for class IDs.

The newly added module directory is placed at the end of the module search path. You can

specify that the directory be added to either the beginning or end of the module path using the

optional second argument

add_module_path(PATH, '-begin');

add_module_path(PATH, '-end');

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 94 of 147
(v01)

5.1.8. Specifying Class IDs

Every audio module in the library must have a unique class ID. This 32-bit integer is specified

in the file

<DIR>\classids.csv

This comma separated text file contains entries of the form

ClassName,ID

The file can also contain a single entry at the start of the form:

IDOFFSET=32768

The IDOFFSET is added to each ID listed in the file. Using IDOFFSET allows you to quickly

make wholesale changes to all of the modules in the library.

DSP Concepts reserves class IDs in the range 0 to 32767 for module libraries shipped with

Audio Weaver. You are free to use any IDs in the range 32768 to 63487 for your custom

modules.

Audio Weaver provides a function for looking up classIDs across a range of audio module

libraries.

ID=classid_lookup(CLASSNAME)

You pass the function a class name string and the classID is returned. The function works by

using the audio module directory search path contained in

AWE_INFO.buildControl.modulePath

For each directory, the file classids.csv is opened and examined. The function classid_lookup.m

uses internal caching to speed up the search process.

5.1.9. Reordering of Render Variables

As part of the build process, Audio Weaver reorders the variables in a module or subsystem to

match the manner in which modules are instantiated by the Server. The reordering is performed

by the function

M=awe_reorder_variables(M)

where M is an @awe_module or @awe_subsystem object. Variables are ordered according to

the rules

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 95 of 147
(v01)

1. All non-hidden scalar variables

2. All hidden scalar variables

3. All array variables (pointers)

4. Pointers to internal modules (subsystems only)

The ordering enforces that all scalar variables, which are initialized by the base module

constructor function, are located at the start of the instance structure. Refer to Section 4.4.1 for

additional details.

5.1.10. Overwriting Existing Source Files

Audio Weaver is frequently used in conjunction with a source code control system. The

awe_generate_library.m function overwrites generated files only if there is an actual change to

the file. If nothing has changed, the file is untouched.

Each generated file is first written to a temporary file. Then the temporary file is compared with

the existing version. If the files are identical, then the existing file is untouched and the

temporary file is deleted. If the temporary file differs from the existing file, then the existing file

is overwritten.

5.1.11. Specifying Wiring Constraints

The .wireAllocation field of an audio module allows you to specify wiring constraints for the

routing algorithm. There are two possible values

'distinct' – None of the input wire buffers will be used as output wire buffers. That is, the

outputs will be "distinct" from the inputs.

'across' – The routing algorithm will try and reuse wire buffers across the module,

whenever possible. That is, the wire buffer assigned to input pin N will be reused

for output pin N. The wires are the same "across" the module.

awe_module.m sets .wireAllocation to 'distinct' by default. This is the safest approach but

consumes more memory. 'across' conserves memory and is often easier to debug. When

'distinct' is specified, the output wires will always be different compared to the inputs. When

'across' is specified, the routing algorithm will attempt to reuse the buffers, but this may not

always be the case.

The choice between 'distinct' and 'across' depends upon the internal details of your processing

algorithm. Buffer pointer usage within the algorithm has to be studied to determine if 'across'

wiring is possible. Consider the scaler module processing function shown below. This module

has N inputs and N outputs with the Nth input being scaled and written to the Nth output.

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 96 of 147
(v01)

void awe_modScalerProcess(void *pInstance)

{

 awe_modScalerInstance *S = (awe_modScalerInstance *)pInstance;

 WireInstance **pWires = ClassModule_GetWires(S);

 int numPins = ClassModule_GetNInWires(S);

 int pin;

 for(pin=0;pin<numPins;pin++)

 {

 awe_vecScale((float *)(pWires[pin]->buffer), 1,

 (float *)(pWires[numPins+pin]->buffer), 1,

 S->gain, ClassWire_GetNumSamples(pWires[pin]));

 }

}

It is safe to use 'across' wiring in this case. Now consider the Mixer module. This module has 1

input pin with M channels and 1 output pin with N channels. Each output channel is formed as a

weighted sum of input channels with each output channel written in order. In this case, you can

no longer use 'across' wiring because each output channel depends upon each input channel. If

'across' wiring were used, then writing the first output channel would overwrite the first input

channel.

Note that 'across' is a suggestion to the routing algorithm. In certain cases, 'across' wiring cannot

be used and distinct buffers will be provided. You should always write your audio module

processing function anticipating that the buffer pointers may be distinct. For example, the inner

loop of the awe_modScalerExampleProcess function should not be written as:

 for(pin=0;pin<numPins;pin++)

 {

 awe_vecScale((float *)(pWires[pin]->buffer), 1,

 (float *)(pWires[pin]->buffer), 1,

 S->gain, ClassWire_GetNumSamples(pWires[pin]));

 }

The routing algorithm may decide to assign a distinct output buffer; always pass in the given

output buffer pointer.

The most common situation when 'across' wiring cannot be applied is when a module sits

between the input and output of a system. For routing reasons, the wires attached to the input

and output of a subsystem have to be distinct. Placing a module with .wireAllocation='across'

between them will still lead to distinct buffer allocation.

5.1.12. AudioWeaverModule Tag

The function awe_help.m displays a list of all Audio Weaver modules on the current module

search path. In order for a module m-file to be picked up, you need to add the tag

AudioWeaverModule somewhere within the m-file. This tag allows you to differentiate between

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 97 of 147
(v01)

actual module m-files and other MATLAB files contained in the same directories. The tag can

be placed anywhere within the file, usually in a comment as shown below:

% AudioWeaverModule [This tag makes it appear under awe_help]

5.2. Code Markers and Template Substitution

Template substitution is an automated method of replacing strings within a file to generate an

output file. The process starts with a template file and Audio Weaver provides separate

templates for the generated .c and .h files:

<AWE>\matlab\module_generation\templates\awe_module_template.h

<AWE>\matlab\module_generation\templates\awe_module_template.c

A template file contains normal text interspersed with entries of the form

$IDENTIFIER$

where IDENTIFIER is a string. The template substitution function is given a list of identifiers

together with their replacements. The substitutions are performed and a new output file is

created. If an identifier within a file is not defined, then it is deleted and does not appear in the

output.

5.2.1. Adding Code Markers

A "code marker" is an identifier together with a replacement string. Each module and subsystem

has its own list of code markers. The MATLAB function

awe_addcodemarker(M, IDENTIFER, SUBSTITUTION)

creates a new code marker. The function arguments are:

M - @awe_module or @awe_subsystem object

IDENTIFIER – string indicating a specific identifier in a template file.

SUBSTITUTION – string containing the replacement value for the identifier.

SUBSTITUTION can be either a single string or a cell array of strings for multi-line

replacements. If you call awe_addcodemarker.m and an IDENTIFIER of the specified name

already exists, then the new SUBSTITUTION string is appended as another line. For example,

the following entry located near the top of awe_module_template.c file is used to specify include

files:

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 98 of 147
(v01)

$srcFileInclude$

If you call

awe_addcodemarker(M, 'srcFileInclude', '#include "file1.h"');

awe_addcodemarker(M, 'srcFileInclude', '#include "file2.h"');

Then the generated file will include both lines:

#include "file1.h"

#include "file2.h"

An optional 4th argument selects between appending and overwriting duplicate code markers.

awe_addcodemarker(M, IDENTIFER, SUBSTITUTION, APPEND)

By default, APPEND=1 and duplicate code markers are appended. If you set APPEND=0, then

an existing code marker of the same name is overwritten. For example,

awe_addcodemarker(M, 'srcFileInclude', '#include "file1.h"');

awe_addcodemarker(M, 'srcFileInclude', '#include "file2.h"', 0);

Since $srcFileInclude$ is already defined, the second call to awe_addcodemarker.m will

overwrite the code marker and the generated file will only contain

#include "file2.h"

The call awe_addcodemarker.m adds the code marker information into the field .codeMarker of

the module. You could, for example, examine the code markers defined for the scaler_module.m

as follows:

>> M=scaler_module('fred');

>> M.codeMarker{1}

ans =

 name: 'processFunction'

 text: 'Insert:code\InnerScaler_Process.c'

>> M.codeMarker{2}

ans =

 name: 'discussion'

 text: {1x9 cell}

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 99 of 147
(v01)

5.2.2. Inserting Files

In many cases, the SUBSTITUTION string contains many lines and it is unwieldy to represent in

MATLAB. Instead, it is easier to copy the SUBSTITUTION text from another file. If the

SUBSTITUTION string has the form "Insert:filename.txt" then the text will be copied from

filename.txt. filename.txt is referenced relative to the location of the module's m-file. You can

specify subdirectories as well. For example:

awe_addcodemarker(M, 'processFunction', ...

'Insert:code\InnerPeakHold_Process.c');

inserts the file InnerPeakHold_Process.c located in the subdirectory "code".

5.2.3. awe_lookupcodemarker.m

The MATLAB function

STR=awe_lookupcodemarker(M, IDENTIFIER)

returns the contents of a code marker. If IDENTIFIER is not defined, then the function returns

an empty string. The returned value STR is either a string, for simple replacements, or a cell

array in the case of multi-line replacements.

5.2.4. awe_deletecodemarker.m

M=awe_deletecodemarker(M, IDENTIFIER)

Deletes the code marker named IDENTIFIER.

M=awe_deletecodemarker(M)

Deletes all code markers associated with a module or subsystem.

5.2.5. Template Substitution Preprocessor

The template files also contain their own preprocessor directives. These directives are similar to

those used by the C preprocessor but are handled by the template substitution function. The

directives are identified by ## and only a few variations are supported.

##if 1

… This code will appear in the output file …

##endif

##if 0

… This code will NOT appear in the output file …

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 100 of 147
(v01)

##endif

When the argument to ##if is 1, then the text between the ##if and ##endif will appear in the

generated file. Otherwise, the text will not appear. You can also use an identifier with an ##if

statement as in

##if $myVariable$

Optional text

##endif

If you set

awe_addcodemarker(M, 'myVariable', '1')

then the optional text will appear in the generated file. Note that $myVariable$ is being set to

the string '1' not to the numeric value 1. The template preprocessor directive also supports an

else clause

##if $combineSourceFiles$

#include "$combinedIncludeName$"

##else

#include "$baseHFileName$"

##endif

5.2.6. Frequently Defined Code Markers

This section lists out code markers that are frequently defined when developing custom audio

modules.

5.2.6.1. $bypassFunction$

C code which specifies the inner portion of the bypass function. When this is defined, the bypass

function is written into generated C file.

5.2.6.2. $bypassFunctionName$

Allows you to specify a bypass function by name. This is typically used in conjunction with one

of the predefined bypass functions listed in Section 4.4.5. For example,

awe_addcodemarker(M, 'bypassFunctionName', 'IOAcrossModule_Bypass');

The following logic defines the bypass function.

1. If $bypassFunction$ is defined, then the code is placed into the generated .c file and

$bypassFunctionName$ is set to awe_modClassNameBypass,

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 101 of 147
(v01)

2. If $bypassFunctionName$ is defined, then this function is used for bypass behavior. No

additional code is placed into the generated .c file.

3. Otherwise, the default bypass function IOMatchUpModule_Bypass() is used. No

additional code is placed into the generated .c file.

5.2.6.3. $constructorFunction$

Specifies the inner portion of a custom constructor function. The function must follow the

calling convention outlined in Section 4.4.1.

Simple audio modules without indirect arrays – No need to define the constructor

function. The BaseClassModule_Constructor() usually does everything needed.

Audio modules with direct arrays – Set the .arrayHeap and .arraySizeConstructor fields

of the array variables in MATLAB. Audio Weaver will then auto generate a

suitable constructor function.

Complex modules requiring further initialization – Write a custom $constructorFunction$

or use the $postConstructorFunction$ shown below.

Modules created out of subsystems – Audio Weaver automatically generates code for

these systems. If you need further initialization, use the

$postConstructorFunction $ shown below.

5.2.6.4. $postConstructorFunction$

This code marker follows immediately after the $constructorFunction$ code marker in

awe_module_template.c. This marker allows you to add your own code in cases where Audio

Weaver generates the memory allocation and instantiation code but further initialization is

needed. It is particularly useful for subsystems.

5.2.6.5. $discussion$

Defines the discussion section of the help documentation. This has been grandfathered for

backwards compatibility. When writing new modules, set the M.docInfo.discussion field of the

audio module instead.

5.2.6.6. $getFunction$

Specifies the inner portion of a module's Get function. Follows the calling convention outlined

in Section 4.4.4.

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 102 of 147
(v01)

5.2.6.7. $setFunction$

Specifies the inner portion of a module's Set function. Follows the calling convention outlined in

Section 4.4.3.

5.2.6.8. $hFileDefine$

Located near the top of the template file awe_module_template.h. Allows you to add additional

preprocessor directives (or anything else) at the start of the header file. Example,

awe_addcodemarker(M, 'hFileDefine', '#define TRUE 1');

5.2.6.9. $hFileInclude$

Located near the top of the template file awe_module_template.h. Allows you to include

additional header files.

awe_addcodemarker(M, 'hFileInclude', '#define <stdlib.h>');

5.2.6.10. $processFunction$

Specifies the inner code for the module's processing function. This must always be defined for

modules. For subsystems, the auto-generated should be used. Refer to Section 4.4.2 for a

discussion of how to define this function.

5.2.6.11. $preProcessFunction$

This code marker is located immediately before the $processFunction$ marker. It is typically

used with subsystems when you want to insert your code custom code immediately prior to the

auto-generated $processFunction$.

5.2.6.12. $postProcessFunction$

Similar to $preProcessFunction$ but the code here is inserted immediately after the

$processFunction$. It is typically used with subsystems when you want to insert your custom

code immediately after the auto-generated $processFunction$.

5.2.6.13. $srcFileDefine$

Located near the top of the template file awe_module_template.c. Allows you to add additional

preprocessor directives (or anything else) at the start of the source file.

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 103 of 147
(v01)

5.2.6.14. $srcFileInclude$

Located near the top of the template file awe_module_template.c. Allows you to specify

additional includes files.

5.2.6.15. $hFileTemplate$ and $srcFileTemplate$

Audio Weaver uses the default template files specified at the start of Section 5.2. You can

override the templates used by a particular module by setting these code markers. There are

separate markers for the header file, $hFileTemplate$, and the source file, $srcFileTemplate$. It

is handy to override these values if you want to change copyright information in the generated

files.

5.3. Fine Tuning Code Generation

This section contains further instructions for fine tuning code generation. Many of the items

apply to modules generated using compiled subsystems.

5.3.1. Automatically Generated Array Initializers

In many cases, an audio module requires a custom constructor function solely for the purpose of

allocating indirect arrays. If the size of the allocated memory can be defined using existing

module variables, then Audio Weaver can automatically generate a constructor function.

The generated array constructor code is of the form:

if ((S->ARRAYVAR = (TYPE *) awe_fwMalloc(SIZE, HEAP, retVal)) == 0)

{

 // Error code is in *retVal

 return 0;

}

where

ARRAYVAR – is the name of the variable

TYPE – is the type of the module (either float, fract32, or int)

SIZE – is a user specified string

HEAP – is a user specified string.

ARRAYVAR and TYPE are already known to MATLAB. SIZE and HEAP must be separately

specified as C code to embed into the generated code. The string SIZE is specified in MATLAB

by setting field .arraySizeConstructor field of the array variable. Similarly, HEAP is specified

by setting the .arrayHeap field of the array variable. For an example, see the Peak Hold module

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 104 of 147
(v01)

in Section 7.2

5.3.2. Specifying Module Constructor Arguments in Subsystems

This advanced technique is frequently used when compiling subsystems to generate new module

classes. Audio Weaver automatically generates a Constructor function for the compiled

subsystem, and this constructor in turn calls the constructor functions of the internal modules.

The difficulty arises because the arguments to the internal constructor functions are hard coded

in the generated file based on the values at code generation time. This is not always the desired

behavior.

To get around this problem, Audio Weaver allows you to specify a piece of C code which

overrides the default numeric initializer for an internal module variable. The C code is written to

the .constructorCode field of the variable. For an example, refer to the look ahead limiter

example of Section 0.

5.3.3. Avoiding Wire Allocation Problems with Subsystems

This issue also applies to the case of compiling subsystems to form new module classes. If your

subsystem has .flattenOnBuild=1 (which means that it is not compiled), then you can ignore this

section. This problem arises because Audio Weaver modules can operate on an arbitrary number

of channels. In certain circumstances, the routing algorithm incorrectly allocates wire buffers

during code generation such that audio processing crashes at run-time. In these cases, you need

to be careful how you specify default channel counts and block sizes within modules. The look

ahead limiter example of Section 7.4 demonstrates the problem and presents a solution.

5.4. unique_classes.m

C=unique_classes(SYS)

where

SYS - @awe_subsystem object.

Returns a list of all the unique module and subsystem classes found within subsystem SYS. The

function recursively searches through the system and identifies individual modules and

subsystems. The return result C is a cell array of strings. If called without any output arguments,

the function displays the class list to the MATLAB output window. The class name of the input

SYS is not included in the C. This function is useful for dependency checking.

[C, M]=unique_classes(SYS)

An optional second output receives a cell array of the actual modules/subsystems listed in C.

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 105 of 147
(v01)

SYS can also be a cell array of subsystems. In this case, the function returns the overall set of

unique classes needed to create all of the systems in SYS.

[C, M]=unique_classes(SYS CLIST)

An optional Boolean argument CLIST specifies that the list of unique module classes should be

displayed in a manner appropriate for inclusion in the TargetInfo.h file.

For example, to determine all of the unique module classes needed for the agc_example, type:

>> SYS=agc_example;

>> unique_classes(SYS)

Unique classes within the subsystem of class: test

AGC

AGCCore

AGCMultiplier

Meter

ScalerDB

If you want to build a target with only the modules required for the agc_example, you would set

CLIST=1. The following C code is then printed to the output window:

extern const ModClassModule awe_modAGCClass;

extern const ModClassModule awe_modAGCCoreClass;

extern const ModClassModule awe_modAGCMultiplierClass;

extern const ModClassModule awe_modMeterClass;

extern const ModClassModule awe_modScalerDBClass;

#define LISTOFCLASSOBJECTS \

&awe_modAGCClass, \

&awe_modAGCCoreClass, \

&awe_modAGCMultiplierClass, \

&awe_modMeterClass, \

&awe_modScalerDBClass

This text can be pasted directly into TargetInfo.h.

5.5. awe_generate_module.m

M=awe_generate_module(M, DIRECTORY, WRITEFILES)

Internal function used by awe_generate_library.m. In some cases, such as when generating

documentation, you may want to call this function directly. Arguments:

M - @awe_module object.

DIRECTORY – directory in which the generated files should be written to. By default,

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 106 of 147
(v01)

this is set to MATLAB's current working directory (returned by the pwd

command).

WRITEFILES – an optional Boolean argument which specifies whether the generated

files should actually be written. If you set WRITEFILES=0, then the module M

will be updated with code markers, but no output files will be written. Use

WRITEFILES=0 when generating documentation as described in the next

Section.

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 107 of 147
(v01)

6. Generating Documentation

In addition to generating source and header files, Audio Weaver also generates documentation

for modules and subsystems in Microsoft Word format. The generated documentation is shown

in Figure 1 as item 5. The information in the documentation is pulled from several different

places:

• The help comments at the start of the MATLAB M-file. [manual]

• Inserted code markers. [manual]

• Variable and module information. [automatic]

• Input, output, and scratch pins. [automatic]

• Subsystem drawings. [automatic]

In the list above, "manual" indicates that the content is created by the module developer.

"automatic" indicates that the content is generated by Audio Weaver based on information in the

module m-file.

6.1. awe_help

For example, to see the generated help for the scaler smoothed module, type

awe_help scaler_smoothed_example_module

at the MATLAB command line. The documentation shown in Figure 2 appears.

Behind the scenes, MATLAB checks if documentation already exists for the module. Since the

scaler_smoothed_example_module.m function exists in the directory

<Audio Weaver>\Modules\Examples

it checks if the file

<Audio Weaver>\Modules\Examples\Doc\ScalerSmoothedExample.html

exists. The name "ScalerSmoothedExample.html" is based on the module's class name. If the

file exists, it is opened and displayed in the MATLAB HTML browser. If it doesn't exist, then

the documentation is generated on the fly using Microsoft Word and then saved in HTML

format. The process of generating new documentation is quite involved and can take several

seconds to complete.

If the HTML file exists, you can force it to be rebuilt using an optional argument:

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 108 of 147
(v01)

awe_help scaler_smoothed_example_module –rebuild

Figure 2. Automatically generated documentation for the scaler_smoothed_example_module.m.

6.2. awe_generate_doc.m

awe_help.m uses the function awe_generate_doc.m behind the scenes. Using

awe_generate_doc.m directly gives you more control over the final documentation including the

ability to create a single document describing an entire module library.

awe_generate_doc(M, FILENAME)

Generates help documentation for an audio module in a specified format. Arguments:

M - @awe_module object.

FILENAME - file in which to store the resulting Word document in. This needs to have

a .doc extension.

The audio module must already have been through the code generation process and have suitable

code markers added.

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 109 of 147
(v01)

If M is a cell array containing modules, then the function generates documentation for the entire

library. By default, modules appear in the documentation in the same order as in the cell array

M. An optional third argument, SORT, allows you to specify that the modules should be sorted

by their classNames.

awe_generate_doc(M, FILENAME, SORT)

6.3. Selecting the Documentation Format

The global variable AWE_INFO.docControl.format determines the format of the generated

documentation. By default, this is set to

AWE_INFO.docControl.format='html';

and documentation is displayed as HTML. Switching to

AWE_INFO.docControl.format='doc';

causes the documentation to be displayed in Microsoft Word format. In both cases, Microsoft

Word is used to generate the underlying document and the .format variable controls which

format the document is saved in. Generating documentation requires that you have Microsoft

Word installed.

Note that .docControl does not affect the HTML format used by awe_help.m.

6.4. Guidelines for Documenting Modules and Subsystems

The generated documentation relies upon two manually written sections as shown above. We

suggest that you use the following guidelines when documenting modules. Within the help

comments at the start of the M-file discuss:

• A brief summary of the module.

• The purpose of each argument to the M-file and its default value.

The module field .docInfo.discussion (or a code marker named 'discussion’) contains the text

which is inserted under the “Discussion” section of the documentation. The discussion should

contain:

• A lengthy description of how the module operates.

• Whether the module has a fixed or variable number of pins.

• Scratch pin requirements and how the sizes relate to the sizes of the input and output

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 110 of 147
(v01)

pins. (The automatically generated information lists out the scratch pin sizes, but the

values shown are only based on the current module settings. The relationship between

the scratch sizes and other pin sizes is not described in the automatically generated text.)

6.5. Hilbert Subsystem Example

We now walk through the automatically generated help for the hilbert_subsystem.m and describe

where each of the items shown is taken from.

Module Class Name

Description field

‘discussion’ code marker

Comments at the top of

hilbert_subsystem.m.

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 111 of 147
(v01)

Automatically generated based on

the input pin information.

Automatically generated based on

the output pin information.

Automatically generated based on

the scratch pin information.

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 112 of 147
(v01)

Automatically generated based on

the variables and modules that are

part of the subsystem.

Automatically generated based on

the variables and modules that are

part of the subsystem.

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 113 of 147
(v01)

6.6. Adding Equations to Documentation

Audio Weaver supports adding equations to the discussion section of a module. Equations are

entered as text commands within the 'discussion' portion in LaTeX format. Equations must be

enclosed between dollar signs. For example,

$\angle(out1)-\angle(out2) = 90~degrees.$

is expanded to

in the document. If you are new to LaTeX, there are many good references available on-line.

tempName [Hilbert]

bq11
[Biquad]

in out

bq21
[Biquad]

in out

bq12
[Biquad]

in out

bq22
[Biquad]

in out

bq13
[Biquad]

in out

bq23
[Biquad]

in out

inReal

inImag

outReal

outImag

For subsystems, we issue a ‘draw’

command in MATLAB and

capture the screen output

C Usage information is

automatically generated.

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 114 of 147
(v01)

7. The Examples Module Library

This section discusses examples which illustrate advanced module design techniques. The

modules are part of the Examples module library introduced in Section 2. In addition to the

scaler_smoothed_example_module.m, the library contains

scaler_example_module.m – Simple scaler. This module demonstrates how to support

multiple input and output pins each with, possibly, a different number of

channels.

peak_hold_example_module.m – Similar to a level meter in that it measures the peak

signal level. This module demonstrates how to allocate arrays and update array

sizes within the module's prebuild function. A fixed-point version of this example

is also provided: peak_hold_example_fract32_module.m.

fader_example_module.m – Front-back fader which pans a signal between two different

outputs. This module demonstrates compiled subsystems, that is, how to build a

new module class out of a subsystem. A fixed-point version of this example is

also provided: fader_example_fract32_module.m.

downsampler_example_module.m – Downsampler which keeps 1 out of every D

samples; no filtering is performed. This module demonstrates how to operate on

arbitrary 32-bit data types as well as changing the output block size and sample

rate.

lah_limiter_example_module.m – Look ahead limiter delivered as a compiled subsystem.

This module demonstrates some advanced features of compiled subsystems

including initializing internal module variables and clarifying wire buffer usage.

The example library is found in the

<AWE>\Module\Examples

directory. Run the main script make_examples.m to generate code for the entire library.

7.1. Scaler Module

This example is contained in the file scaler_example_module.m. It is equivalent to

scaler_module.m provided in the Deprecated module library. This module implements a

straightforward linear scaler without any smoothing. The module

scaler_smoothed_example_module.m implements linear scaler with smoothing. The module has

single input pin and single output pin with arbitrary number of channels. This module illustrate

the basic components of Audio Weaver module.

The input arguments to the MATLAB constructor function are:

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 115 of 147
(v01)

function M=scaler_float_module(NAME)

It has only one argument and which is the name of the module (a string.

We next create and name the @awe_module object

M=awe_module('ScalerExample', 'Linear multichannel scaler');

if (nargin == 0)

 return;

end

M.name=NAME;

and set the MATLAB processing function

M.processFunc=@scaler_example_process;

The .gain variable is added. This gain is applied across all channels:

add_variable(M, 'gain', 'float', 1, 'parameter', 'Linear gain');

The default range information for the variable is set. This can be changed after the module has

been instantiated in MATLAB and is used when drawing the inspector. We also set the units to

'linear'. This is just for display purposes and as a reminder in the documentation.

M.gain.range=[-10 10];

M.gain.units='linear';

Input and output pins are added to the module. The module has one input pin and one output pin

with arbitrary number of channels.

PT=new_pin_type([], [], [], 'float', []);

add_pin(M, 'input', 'in', 'Input signal', PT);

add_pin(M, 'output', 'out', 'Output signal', PT);

The C file containing the processing function is specified

awe_addcodemarker(M, 'processFunction',

'Insert:code\InnerScalerExample_Process.c');

followed by documentation for the module:

awe_addcodemarker(M, 'discussion', {'The Scaler module scales

multichannel signals by a single gain value. ', ...

'', ...

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 116 of 147
(v01)

'This module is an example to be used with the documentation.'});

We also indicate that the module can reuse the same wires for input and output.

M.wireAllocation='across';

Next code is the module browser information used by Audio Weaver Designer. It describes to

Audio Weaver Designer where to place the module in the tree, the image of the module under

tree, search tag and the basic shape of the module in the Designer.

M.moduleBrowser.path = 'Examples';

M.moduleBrowser.image = '../images/E.bmp';

M.moduleBrowser.searchTags = 'gain volume';

M.shapeInfo.basicShape = 'triangle';

M.shapeInfo.legend = 'gain';

The processing code is contained in the file InnerScalerExample_Process.c.

awe_modScalerExampleInstance *S = (awe_modScalerExampleInstance

*)pInstance;

WireInstance **pWires = ClassModule_GetWires(S);

FLOAT32 *inPtr;

FLOAT32 *outPtr;

INT32 sample, numSamples;

inPtr = (FLOAT32 *)(pWires[0]->buffer);

outPtr = (FLOAT32 *)(pWires[1]->buffer);

numSamples = (INT32) ClassWire_GetNumSamples(pWires[0]);

for(sample = 0; sample < numSamples; sample++)

{

 outPtr[sample] = inPtr[sample] * S->gain;

}

The macro

int numSamples = ClassModule_GetNumSamples(pWires[0]);

gets the total number of samples of the input pin, which same as output pin size. We then loop

over for numSamples and apply the S->gain for each sample on input and store in output. The

input data is located at:

pWires[0]->buffer

and the output data is placed into

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 117 of 147
(v01)

pWires[1]->buffer

7.2. Peak Hold Module

The peak hold module demonstrates the use of variable size arrays and shows how the

constructor function can be specified completely in MATLAB code. The peak hold module has

a single multichannel input pin. The module computes the maximum absolute value for each

channel on a block-by-block basis. The module records the peak absolute value seen since the

module started running and also computes a peak detector with settable attack and decay rates.

In many ways, the peak hold module is similar to a meter module working in block-by-block

mode. This module is contained within the file peak_hold_example_module.m. A related fixed-

point version is found in peak_hold_example_fract32_module.m

The module begins in the usual way. The MATLAB function takes a single argument which is

the name of the module:

function M=peak_hold_module(NAME)

We then create the underlying module object, set its name and also set three internal functions.

M=awe_module('PeakHoldExample', 'Displays peak value');

if (nargin == 0)

 return;

end

M.name=NAME;

M.preBuildFunc=@peak_hold_example_prebuild;

M.setFunc=@peak_hold_example_set;

M.processFunc=@peak_hold_example_process;

Next an input pin is added. This pin accepts floating-point data and places no restrictions on the

block size or sample rate.

PTIN=new_pin_type;

add_pin(M, 'input', 'in', 'audio input', PTIN);

Several top-level parameters are added. These parameters set the attack and decay times (in

milliseconds) and also specify a variable which allows the peak values to be reset.

add_variable(M, 'Reset', 'int', 0, 'parameter', 'reset the current peak

values');

M.Reset.range=[0 1];

add_variable(M, 'attackTime', 'float', 0.01, 'parameter', 'Envelope

detector attack time constant');

M.attackTime.units='msec';

M.attackTime.range=[0 100];

mailto:M.setFunc=@peak_hold_example_set

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 118 of 147
(v01)

add_variable(M, 'decayTime', 'float', 0.01, 'parameter', 'Envelope

detector decay time constant');

M.attackTime.units='msec';

M.attackTime.range=[0 100];

Add two additional hidden variables which are the attack and decay coefficients. These

coefficients are computed based on the sampling rate and block size and the calculation occurs

within the set function. Both variables are marked as being hidden.

add_variable(M, 'attackCoef', 'float', 0, 'derived', 'Computed

coefficient used for attack');

M.attackCoef.isHidden=1;

add_variable(M, 'decayCoef', 'float', 0, 'derived', 'Computed

coefficient used for decay');

M.attackCoef.isHidden=1;

The next part is key to this example. We add two arrays whose size depends upon the number of

channels in the input signal. The code is:

add_array(M, 'peakHold', 'float', [], 'state', 'Array of peak values');

M.peakHold.arrayHeap='AWE_HEAP_FAST2SLOW';

M.peakHold.arraySizeConstructor='ClassWire_GetChannelCount(pWires[0]) *

sizeof(float)';

add_array(M, 'peakDecay', 'float', [], 'state', 'Array of decaying peak

values');

M.peakDecay.arrayHeap='AWE_HEAP_FAST2SLOW';

M.peakDecay.arraySizeConstructor='ClassWire_GetChannelCount(pWires[0])

* sizeof(float)';

At this point, the array is set to the empty matrix; its size is based on the number of input

channels which is currently not known. The array size is set below in the module's prebuild

function.

Two additional fields are set for each array variable. These variables provide information

enabling the C constructor function to be automatically generated. For each array, a call to the

framework memory allocation function is made

void *awe_fwMalloc(size_t size, UINT heapIndex, int *retVal);

The first argument is the number of words to allocate (the size) and the second argument

specifies which memory heap to allocate the memory from. In the MATLAB code, set

M.peakHold.arraySizeConstructor='ClassWire_GetChannelCount(pWires[0]) *

sizeof(float)';

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 119 of 147
(v01)

This string becomes the first argument to awe_fwMalloc(). The variable pWires is an argument

to the constructor function and points to an array of wire pointers. The code contained in the

string determines the number of channels in the first input wire and multiplies by sizeof(float).

The net result is the amount of memory to allocate for the array.

The second argument to the awe_fwMalloc function is specified by the MATLAB code

M.peakHold.arrayHeap='AWE_HEAP_FAST2SLOW';

This value is #define'd within Framework.h and specifies that memory should first be taken from

the fast internal heap, and if this heap is full, is should then be taken from the slow heap.

Together, the .arraySizeConstructor and .arrayHeap settings get turned into the following code

by the code generator:

if ((S->peakHold = (float *)

awe_fwMalloc(ClassWire_GetChannelCount(pWires[0]) * sizeof(float),

AWE_HEAP_FAST2SLOW, retVal)) == 0)

 {

 // Error code is in *retVal

 return 0;

 }

This process repeats for the second array .peakDecay.

Thus far, the code pieces within MATLAB generate the C constructor function. MATLAB also

needs to know the sizes of the arrays for tuning and in order to draw the user interface. The

arrays sizes are set in the MATLAB prebuild function. This is also located in the file

peak_hold_example_module.m:

function M=peak_hold_example_prebuild(M)

numChannels=M.inputPin{1}.type.numChannels;

M.peakDecay.size = [numChannels 1];

M.peakDecay = zeros(numChannels, 1);

M.peakHold.size = [numChannels 1];

M.peakHold = zeros(numChannels, 1);

return

For each array, we first set the size to [numChannels 1] and then set the default value to an array

of all zeros of the same size. Note that the order of operations is important. When doing array

assignments, Audio Weaver checks that the assigned data is of the appropriate size. If the code

were instead

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 120 of 147
(v01)

M.peakDecay = zeros(numChannels, 1);

M.peakDecay.size = [numChannels 1];

Then the first assignment of zeros() would fail since the size of the array has not yet been set.

The rest of the function is fairly straightforward. We specify the C processing and set functions

using code markers

awe_addcodemarker(M, 'processFunction',

'Insert:code\InnerPeakHoldExample_Process.c');

awe_addcodemarker(M, 'setFunction',

'Insert:code\InnerPeakHoldExample_Set.c');

Documentation is then added (not shown here). A line is added to the generated C file which

includes the file FilterDesign.h. This file contains some of the design equations used by the C

set function.

awe_addcodemarker(M, 'srcFileInclude', '#include "FilterDesign.h"');

There are both MATLAB and C versions of the set function. The functions translate the high-

level attackTime and decayTime variables to the low-level attackCoeff and decayCoeff

variables. The MATLAB code is

function M=peak_hold_example_set(M)

SR=M.inputPin{1}.type.sampleRate;

M.attackCoef=design_smoother(M.attackTime, SR, 1);

M.decayCoef=design_smoother(M.decayTime, SR, 1);

return;

The C code contained in InnerPeakHoldExample_Set.c is:

awe_modPeakHoldExampleInstance *S;

WireInstance **pWires;

float SR;

S = (awe_modPeakHoldExampleInstance *)pInstance;

pWires = ClassModule_GetWires(S);

SR = (float) ClassWire_GetSampleRate(pWires[0]);

S->attackCoef = design_smoother(S->attackTime, SR, 1);

S->decayCoef= design_smoother(S->decayTime, SR, 1);

return(0);

Why are two versions of the set function required? For this module, the MATLAB function is

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 121 of 147
(v01)

not required. After a module is allocated on the target in C, the C set function is automatically

called and the coefficients computed. The MATLAB code is for convenience and can also be

used for regression testing.

The next portion of the peak_hold_example_module.m file contains the inspector information.

We only show the .peakHold variable since the others are similar or have already been discussed.

The inspector drawn is:

This example has a stereo input. The first two meters shown are .peakDecay for both channels.

The second two meters show .peakHold. The MATLAB code for drawing the .peakDecay

meters is:

M.peakDecay.guiInfo.transposeArray=1;

M.peakDecay.guiInfo.range=[-60 10];

M.peakDecay.guiInfo.controlType='meter';

M.peakDecay.guiInfo.attribStr='mapping=db20';

add_control(M, '.peakDecay', 'topRight');

The .peakDecay variable is defined in MATLAB as a column vector. In this case, since there are

two input channels, the vector is of dimension 2x1. When the meter control is drawn, the default

behavior is to draw it as 2 high and 1 wide (this matches the MATLAB variable size)

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 122 of 147
(v01)

This is not what we want – we want the controls to be side by side. To achieve this, the array of

values has to be transposed to form a row vector. The statement

M.peakDecay.guiInfo.transposeArray=1;

achieves this. Next, the range of the control is set, the variable is tied to a meter control, and

finally, the control is instructed to convert from linear measurements to dB for display. This

completes the MATLAB code for the .peakDecay inspector control. The .peakHold inspector

specification is almost identical.

The last portion of the file is module browser information as explained in scaler module example

above.

M.moduleBrowser.path = 'Examples';

M.moduleBrowser.image = '../images/E.bmp';

M.moduleBrowser.searchTags = 'peak hold';

M.shapeInfo.legend = 'Peak Hold';

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 123 of 147
(v01)

M.shapeInfo.size = [6 6];

The C processing function is straightforward and is not shown here. Refer to the file

InnerPeakHoldExample_Process.c.

7.3. Fader module

This example teaches how to create a new module class out of a subsystem and shows how to

implement a custom bypass function. The fader module has a single mono input pin, a stereo

output pin, and 3 internal modules:

The input signal is scaled by scalerF to yield the front channel and by scalerB to yield the back

channel. The output pin is stereo with the first channel representing the front and the second

channel the back. The scalers are set so that a portion of the input signal is fed to each of the

front and back channels. The fader implements constant energy panning using a sine/cosine

response.

The fader example is found in fader_example_module.m. As usual, create a subsystem and set

its .name based on an argument to the function.

SYS=awe_subsystem('FaderExample', 'Splits a mono input signal into

front and back channels with constant energy panning.');

if (nargin == 0)

 return;

end

SYS.name=NAME;

Add input and output pins. The input pin is a single channel without any restrictions on the

blockSize or sampleRate. The output pin is stereo without any restrictions on the blockSize or

sampleRate.

PTIN=new_pin_type(1);

PTOUT=new_pin_type(2);

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 124 of 147
(v01)

add_pin(SYS, 'input', 'in', 'audio input', PTIN);

add_pin(SYS, 'output', 'out', 'audio output', PTOUT);

Then add the modules to create the subsystem

add_module(SYS, scaler_smoothed_module('scalerF'));

add_module(SYS, scaler_smoothed_module('scalerB'));

add_module(SYS, interleave_module('inter', 2));

Then connect them together:

connect(SYS, '', 'scalerF');

connect(SYS, 'scalerF', 'inter.in1');

connect(SYS, '', 'scalerB');

connect(SYS, 'scalerB', 'inter.in2');

connect(SYS, 'inter', '');

None of the bypass functions provided with Audio Weaver is suitable for this module. The

desired bypass behavior is to copy the input channel to each of the two output channels and scale

by 0.707. To implement this custom bypass functionality, write an inner bypass function as

shown below:
 awe_modFaderExampleInstance *S = (awe_modFaderExampleInstance *)pInstance;
 WireInstance **pWires = ClassModule_GetWires(S);

 FLOAT32 *in = (FLOAT32 *) pWires[0]->buffer;

 FLOAT32 *outF = (FLOAT32 *) pWires[1]->buffer;

 FLOAT32 *outB = (FLOAT32 *) outF + 1;

 UINT32 numSamples = ClassWire_GetNumSamples(pWires[0]);

 INT32 sample;

 /*awe_vecScale((FLOAT32 *)(pWires[0]->buffer), 1,

 (FLOAT32 *)(pWires[1]->buffer), 2,

 (float)0.707, numSamples);*/

 for(sample = 0; sample < (INT32)numSamples; sample++)

 {

 *outF = in[sample] * 0.707f;

 outF += 2;

 }

 /*awe_vecScale((FLOAT32 *)(pWires[0]->buffer), 1,

 (FLOAT32 *)(outB), 2,

 (float)0.707, numSamples);*/

 for(sample = 0; sample < (INT32)numSamples; sample++)

 {

 *outB = in[sample] * 0.707f;

 outB += 2;

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 125 of 147
(v01)

 }

Then set the 'bypassFunction' code marker to insert this file:

awe_addcodemarker(SYS, 'bypassFunction',

'Insert:code\InnerFaderExample_Bypass.c');

The key lesson this example is the MATLAB code

SYS.flattenOnBuild=0;

This identifies the subsystem as one that is not flattened when building. That is, the

FaderExample module class exists natively on the target. The Server only sends a single

command to the target and the entire subsystem will be instantiated. The automatically

generated constructor function is found in ModFaderExample.c and shown below. The

constructor function allocates the base module and then allocates each of the 3 internal modules.

The module is marked as requiring a total of 4 pins: 1 input, 1 output, and 2 scratch. These pins

are allocated outside of the function and then passed in. By looking through the code you can

see how the wire information is passed to each of the internal modules' constructor function.

AWE_MOD_SLOW_CODE

ModInstanceDescriptor *awe_modFaderExampleConstructor(int * FW_RESTRICT

retVal, UINT nIO, WireInstance ** FW_RESTRICT pWires, size_t argCount,

const Sample * FW_RESTRICT args)

 {

 // Create the module which holds the overall subsystem

 awe_modFaderExampleInstance *S = (awe_modFaderExampleInstance *)

BaseClassModule_Constructor(&awe_modFaderExampleClass, retVal,

ClassModule_PackFlags(1, 1, 2),

 pWires,

argCount, args);

 {

 WireInstance *scalerFWires[2]={ pWires[0], pWires[2] };

 Sample scalerFArgs[4];

 scalerFArgs[0].fVal = 7.0710677e-001f; // scalerF.gain

 scalerFArgs[1].fVal = 1.0000000e+001f; // scalerF.smoothingTime

 scalerFArgs[2].fVal = 7.0710677e-001f; // scalerF.currentGain

 scalerFArgs[3].fVal = 2.0811646e-003f; // scalerF.smoothingCoeff

 S->scalerF = (awe_modScalerSmoothedInstance *)

ClassModule_Constructor(CLASSID_SCALERSMOOTHED, retVal,

ClassModule_PackFlags(1, 1, 0), scalerFWires, 4, (Sample

*)scalerFArgs);

 if (S->scalerF == NULL)

 {

 // Error code is in *retVal

 return 0;

 }

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 126 of 147
(v01)

 }

 {

 WireInstance *scalerBWires[2]={ pWires[0], pWires[3] };

 Sample scalerBArgs[4];

 scalerBArgs[0].fVal = 7.0710677e-001f; // scalerB.gain

 scalerBArgs[1].fVal = 1.0000000e+001f; // scalerB.smoothingTime

 scalerBArgs[2].fVal = 7.0710677e-001f; // scalerB.currentGain

 scalerBArgs[3].fVal = 2.0811646e-003f; // scalerB.smoothingCoeff

 S->scalerB = (awe_modScalerSmoothedInstance *)

ClassModule_Constructor(CLASSID_SCALERSMOOTHED, retVal,

ClassModule_PackFlags(1, 1, 0), scalerBWires, 4, (Sample

*)scalerBArgs);

 if (S->scalerB == NULL)

 {

 // Error code is in *retVal

 return 0;

 }

 }

 {

 WireInstance *interWires[3]={ pWires[2], pWires[3], pWires[1] };

 S->inter = (awe_modInterleaveInstance *)

ClassModule_Constructor(CLASSID_INTERLEAVE, retVal,

ClassModule_PackFlags(2, 1, 0), interWires, 0, (Sample *)NULL);

 if (S->inter == NULL)

 {

 // Error code is in *retVal

 return 0;

 }

 }

 return ((ModInstanceDescriptor *) S);

}

Similarly, since this module is created out of a subsystem, there is no need to provide a

processing function; it will be automatically generated by Audio Weaver. (Yes, a custom

processing function could be supplied, but the generated one works fine.) The automatically

generated processing function is shown in ModFaderExample.c. It simply calls the 3 processing

functions for the 3 internal modules:

 AWE_MOD_FAST_CODE

 void awe_modFaderExampleProcess(void *pInstance)

 {

 awe_modFaderExampleInstance *S = (awe_modFaderExampleInstance *)

pInstance;

 ClassModule_Execute(S->scalerF);

 ClassModule_Execute(S->scalerB);

 ClassModule_Execute(S->inter);

}

The set function for the subsystem takes the high-level .smoothingTime variable and passes it

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 127 of 147
(v01)

down to each of the internal smoothed scaler modules. The function also takes the .fade

variable and computes two separate gains using a sin/cos pan.

 AWE_MOD_SLOW_CODE

 UINT awe_modFaderSet(void *pInstance, UINT mask)

 {

 awe_modFaderInstance *S;

 float arg;

 S = (awe_modFaderInstance *)pInstance;

 S->scalerF->smoothingTime=S->smoothingTime;

 S->scalerB->smoothingTime=S->smoothingTime;

 // Compute the front and back gains from the .fade setting.

 arg = (float)((1+S->fade)*PIDIV4);

 S->scalerF->gain = sinf(arg);

 S->scalerB->gain = cosf(arg);

 ClassModule_Set(S->scalerF, MASK_ScalerSmoothed_smoothingTime |

MASK_ScalerSmoothed_gain);

 ClassModule_Set(S->scalerB, MASK_ScalerSmoothed_smoothingTime |

MASK_ScalerSmoothed_gain);

 return(0);

 }

The function sets the high-level variables of the smoothed scaler modules and then calls the set

function for the module. The set function takes a pointer to the smoothed scaler module and also

a bit mask which identifies the specific variables that were modified. In this case, we are setting

the smoothingTime and gain fields of the modules.

The last portion of the file is module browser information as explained in scaler module example

above.

SYS.moduleBrowser.path = 'Examples';

SYS.moduleBrowser.image = '../images/E.bmp';

SYS.moduleBrowser.searchTags = 'fader';

SYS.shapeInfo.legend = 'Fader';

SYS.shapeInfo.size = [10 6];

There is also a fract32 version of this module called fader_example_fract32_module.m See this

module for examples of fixed-point processing.

7.4. Downsampler Module

This module downsamples a signal by keeping only one out of every D input samples. This

example demonstrates two further techniques used when creating audio modules. First, the

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 128 of 147
(v01)

module essentially copies 32-bit samples from input to output and doesn't care if the data type is

float, fract32, or int. All of these types will work with the same processing function. This is

obvious in C but this flexibility must be encoded into the MATLAB scripts. The second

technique shown is how to change the block size and sample rate as part of the prebuild function.

This example is contained in the file downsampler_example_module.m and is equivalent to

downsampler_module.m found in the Advanced module library.

The MATLAB code defining the input and output pins of the module is:

PT=new_pin_type([], [], [], '*32');

add_pin(M, 'input', 'in', 'Input signal', PT);

add_pin(M, 'output', 'out', 'Output signal', PT);

In this case, the data type is specified as '*32'. This abbreviation is expanded to all possible 32-

bit data types in the add_pin function: {'float', 'fract32', 'int'}. It is possible to specify the data

type to the new_pin_type call as the cell array

{'float', 'fract32', 'int'}

Using the '*32' abbreviation gives us flexibility in case the set of data types is ever expanded in

the future.

The decimation factor D is the second argument to the MATLAB function and is specified at

instantiation time. The variable D appears in the instance data structure and its usage is listed as

'const'. This means that the variable D can no longer be changed.

add_variable(M, 'D', 'int', D, 'const', ...

'Decimation factor. 1 out of every D samples is output');

The module's prebuild function computes the type of the output pin. The block size and sample

rate are reduced by the decimation factor D; the number of channels and data type are

unchanged. We also verify that the block size of the input is divisible by the decimation factor:

blockSize=M.inputPin{1}.type.blockSize;

if (rem(blockSize, M.D) ~= 0)

 warning('The downsample factor D does not evenly divide the

blockSize');

 newBlockSize=floor(blockSize/M.D);

else

 newBlockSize=blockSize/M.D;

end

M.outputPin{1}.type.sampleRate=M.inputPin{1}.type.sampleRate/M.D;

M.outputPin{1}.type.numChannels=M.inputPin{1}.type.numChannels;

M.outputPin{1}.type.dataType=M.inputPin{1}.type.dataType;

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 129 of 147
(v01)

M.outputPin{1}.type.blockSize=newBlockSize;

The module's MATLAB implementation of the processing function is found in

downsampler_example_process.m. It simply returns 1 out of every D input samples.

function [M, WIRE_OUT]=downsampler_process(M, WIRE_IN)

IN=WIRE_IN{1};

WIRE_OUT{1}=IN(1:M.D:end, :);

return;

The C processing function is similar. Although written for 32-bit floats, the function works

equally well with any 32-bit data type.

AWE_MOD_FAST_CODE

void awe_modDownsamplerExampleProcess(void *pInstance)

{

 awe_modDownsamplerExampleInstance *S =

(awe_modDownsamplerExampleInstance *)pInstance;

 WireInstance **pWires = ClassModule_GetWires(S);

 UINT32 blockSize = ClassWire_GetBlockSize(pWires[0]);

 UINT32 numChannels = ClassWire_GetChannelCount(pWires[0]);

 UINT32 channel;

 INT32 blockSizeD = (blockSize / S->D);

 INT32 sample;

 // blockSize is the number of samples in each input channel

 // blockSizeD is the number of samples in each output channel

 FLOAT32 *src = (FLOAT32 *)pWires[0]->buffer;

 FLOAT32 *dst = (FLOAT32 *)pWires[1]->buffer;

 FLOAT32 *srcPtr, *dstPtr;

 for(channel = 0; channel < numChannels; channel++)

 {

 //awe_vecCopy(src+channel, (numChannels*S->D), dst+channel,

numChannels, blockSizeD);

 srcPtr = src + channel;

 dstPtr = dst + channel;

 for(sample = 0; sample < blockSizeD; sample++)

 {

 *dstPtr = *srcPtr;

 srcPtr += numChannels*S->D;

 dstPtr += numChannels;

 }

 }

}

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 130 of 147
(v01)

The last portion of the file is module browser information as explained in scaler module example

above.

M.moduleBrowser.path = 'Examples';

M.moduleBrowser.image = '../images/E.bmp';

M.moduleBrowser.searchTags = 'decimation';

M.shapeInfo.svgImage = '../../images/DownSampler.svg';

M.shapeInfo.size = [6 6];

Note that the shape information is provided as custom svg image. The default shape of the

module is rectangle and it can be overwrite with svgImage tag.

7.5. Look Ahead Limiter Module

This example demonstrates some advanced code generation techniques. The look ahead limiter

is a dynamics processor which applies a time-varying gain to a signal. The module m-file takes

two arguments.

SYS=lah_limiter_example_module(NAME, MAXDELAY)

The first is the NAME of the subsystem and the second, MAXDELAY, is the maximum amount

of delay, in milliseconds. MAXDELAY is used internally when allocating the

delaymsec_module.m:

add_module(SYS, delaymsec_module('delay', MAXDELAY));

SYS.delay.currentDelayTime=MAXDELAY;

The compiled subsystem contains 4 internal modules.

7.5.1. Specifying Internal Module Constructor Arguments

If we follow the normal code generation procedure, then the constructor function for the internal

delaymsec_module will be:

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 131 of 147
(v01)

{

 WireInstance *delayWires[2]={ pWires[0], pWires[5] };

 Sample delayArgs[2];

 delayArgs[0].fVal = 5.0000000e+000f; // delay.maxDelayTime

 delayArgs[1].fVal = 5.0000000e+000f; // delay.currentDelayTime

 S->delay = (awe_modDelayMsecInstance *) ClassModule_Constructor(CLASSID_DELAYMSEC,

retVal, ClassModule_PackFlags(1, 1, 0), delayWires, 2, (Sample *)delayArgs);

 if (S->delay == NULL)

 {

 // Error code is in *retVal

 return 0;

 }

}

If you look at the highlighted code, you'll see that the maximum delay time of the internal

module is hard coded to 5 msec. This is not what we wanted; the delay time should instead be

specified at construction time.

To fix this, add a high-level variable to the look ahead limiter system. We'll name it

'maxDelayTime' to be consistent with the delaymsec_module.m.

add_variable(SYS, 'maxDelayTime', 'float', MAXDELAY, 'const', ...

'Maximum delay time');

SYS.maxDelayTime.units='msec';

Next, we'll use the maxDelayTime field of the look ahead limiter instance structure as an

initializer for the maxDelayTime and currentDelayTime fields of the internal module. This is

done by setting the .constructorCode field of the delaymsec_module variables as shown below:

SYS.delay.maxDelayTime.constructorCode='S->maxDelayTime';

SYS.delay.currentDelayTime.constructorCode='S->maxDelayTime';

In the automatically generated constructor code, S always refers to the base module structure

which has already been allocated and initialized by BaseClassModule_Constructor(). The new

constructor code for the delay is:

{

 WireInstance *delayWires[2]={ pWires[0], pWires[5] };

 Sample delayArgs[2];

 delayArgs[0].fVal = S->maxDelayTime; // delay.maxDelayTime

 delayArgs[1].fVal = S->maxDelayTime; // delay.currentDelayTime

 S->delay = (awe_modDelayMsecInstance *)

ClassModule_Constructor(CLASSID_DELAYMSEC, retVal,

ClassModule_PackFlags(1, 1, 0), delayWires, 2, (Sample *)delayArgs);

 if (S->delay == NULL)

 {

 // Error code is in *retVal

 return 0;

 }

}

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 132 of 147
(v01)

The argument S->maxDelayTime initializes the internal module achieving the desired effect.

7.5.2. Disambiguating Wire Allocation

If look at the default subsystem including wiring information, we see:

By default, the input and output pins are mono and the system ends up using 3 scratch wires:

>> SYS=lah_limiter_example_module('LAH');

>> SYS=prebuild(SYS);

>> SYS.scratchPin

ans =

 [1x1 struct] [1x1 struct] [1x1 struct]

This subsystem is designed to operate on an arbitrary number of channels. However, the wire

allocation shown above is only applicable when the input is mono. (To see this, consider the

MaxAbs module. This module always has a mono output and is assigned to wire #3. The signal

path through DelayMsec can be N-channel and is also assigned to wire #3). If this system is run

with stereo inputs, then the wire allocation is incorrect and the audio processing will fail.

To fix this problem, force the system input pin to have 2 channels by default.

pinType=SYS.max_abs.inputPin{1}.type;

add_pin(SYS, 'input', 'in', 'Audio Input', pinType);

SYS.inputPin{1}.type.numChannels=2;

The pin still holds an arbitrary number of channels, but its default value is 2. When the

subsystem is now routed, the wires will be allocated as:

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 133 of 147
(v01)

The system now requires a total of 4 scratch wires, with a new scratch wire, #6 assigned to the

output of DelayMsec. Furthermore, the buffer allocation is now general purpose and will work

with any number of input channels.

The last portion of the file is module browser information as explained in scaler module example

above.

SYS.moduleBrowser.path = 'Examples';

SYS.moduleBrowser.image = '../images/E.bmp';

SYS.moduleBrowser.name = 'Look Ahead Limiter';

SYS.moduleBrowser.searchTags = 'lah Limiter';

SYS.shapeInfo.legend = 'Look Ahead Limiter';

SYS.shapeInfo.size = [10 6];

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 134 of 147
(v01)

8. Building Audio Module DLLs

The final phase in developing an audio module library is to compile the source files and create a

Dynamic Link Library (DLL) for the Server. Typically, a DLL contains multiple modules

organized around a common theme. For example, Audio Weaver provides several module

packs:

FrameDll.dll (Standard Module Pack) – Basic modules

ModulePackAweAdvancedDLL.dll (Advanced Module Pack) – More specialized

functionality

ModulePackAweDeprecatedDLL.dll (Deprecated Module Pack)– Modules that are no

longer supported and should be avoided in new designs.

After a DLL is built, it is copied into the directory containing the Server executable

<AWE>\Bin\win32-vc100-rel

The Server then loads the DLL next time it launches. The audio module DLL contains all of the

information needed by the Server to instantiate, execute, and control the module. The DLL also

contains the schema information facilitating real-time tuning.

This section describes how to generate an audio module DLL by working through the Examples

module library discussed in Section 7. Building an audio module DLL requires VisualStudio

version 10 (2010). If you are running custom audio modules on an embedded processor, you'll

need to build an audio module DLL and also rebuild the target executable. This section focuses

on building the DLL. Refer to the AWE-Core™ Integration Guide for the additional steps

needed on the target.

The steps described below indicate one method of structuring files and scripts to generate the

module DLL. You can adapt this to fit your development process.

8.1. Building ExamplesDLL.dll

Start by running the master code generation script for this library

make_examples

Next, open up the VisualStudio solution

<AWE>\Module\Examples\Examples.sln

The solution contains two projects shown below

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 135 of 147
(v01)

The ExamplesLib compiles the module source files and builds an overall library. The

ExamplesDLL project builds the DLL. ExamplesLib is easily understood by C programmers.

Understanding ExamplesDLL requires some Windows expertise. Fortunately, you can use the

Examples projects as starting points for your own custom DLL development and do not have to

delve into the underlying Windows issues.

To build the audio module DLL, right-click on ExamplesDll and select Rebuild. The project

dependencies are set so that first ExamplesLib will be built followed by ExampleDll.

ExamplesDLL generates DLL at the location <AWE>\Bin\win32-vc100-rel directory so that it

can be referenced by the Server.

If the AWE_Server.exe executable is not in the expected place, then change the destination

directory in this General configuration step.

If the DLL was properly built, you'll be able to open the Server and see the new library of

examples listed. Select Target→List Modules and scroll down the list looking for the

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 136 of 147
(v01)

ExamplesDLL.dll entry:

8.2. Cloning the Examples Library

We recommend that you use the Examples directory as a starting point for your own custom

module libraries. We also recommend maintaining the existing directory structure. Begin by

copying and renaming the entire Examples directory in <AWE>/<ModuleLibs>. We'll assume

that the new module library will be called MyModules and will be stored in the directory

<MYMODULES>.

Then, do the following steps:

1. Delete all generated files, they will be regenerated:

<MYMODULES>/Examples.h

<MYMODULES>/ExamplesSchema.cpp

<MYMODULES>/ExamplesSchema.sch

<MYMODULES>/Examples.ncb, if exists

<MYMODULES>/Examples.suo, if exists

<MYMODULES>/Source/*

<MYMODULES>/Include/*

<MYMODULES>/Doc/*

2. Also delete all files in <MYMODULES>/matlab except make_examples.m

3. Rename the following files from "Example" to "MyModules". You'll end up with:

<MYMODULES>/BuildDll/MyModulesDLL.vcproj

<MYMODULES>/BuildLib/MyModulesLib.vcproj

<MYMODULES>/matlab/make_mymodules.m

<MYMODULES>/MyModules.sln

4. Clear out any module m-files in

<MYMODULES>\matlab

folder and any code pieces in

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 137 of 147
(v01)

<MYMODULES>\matlab\code

<MYMODULES>\matlab\process

<MYMODULES>\matlab\test

Copy in the files for your custom modules.

5. Edit make_mymodules.m and replace all the occurrences of “Examples” to

“MyModules”. Also specify the list of modules you would like included in the library.

Note that the module must be specified with complete arguments.

6. Edit the class ID file

<MYMODULES>\classids.csv

and specify unique class IDs for the modules in your library.

7. Edit awe_init.m and update the audio module path.

if (exist([pathstr, '\ModuleLibs\MyModules']))
 add_module_path(fullfile(pathstr, 'ModuleLibs', 'MyModules'),

'-end', REMOVE);
end

8. Issue the command “awe_init” in the MATLAB command window.

9. Issue the command “make_mymodules” in the MATLAB command window.

10. Edit the *.vcproj files in a text editor and delete the ProjectGUID string. This string is

supposed to be unique and thus uniquely identify the project within VisualStudio.

However, since we just copied and renamed the .vcproj file, the ProjectGUID will no

longer be unique. Find the line with the ProjectGUID keyword near the top each .vcproj

file:

 ProjectGUID="{5FEC38A8-50BF-41E6-A94F-E489381E2B85}"

The line will be similar to this, but not exact. Change it to:

 ProjectGUID=""

This forces VisualStudio to update the GUID next time the file is opened. Change all

occurrences of"Examples" to "MyModules" throughout the file.

11. Edit the file

<MYMODULES>\BuildDll\ModuleTable.cpp

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 138 of 147
(v01)

and instead of including "Examples.h", change it to "MyModules.h".

12. Open up the file

<MYMODULES>\BuildDll\ModuleLibDLL.def

and change

LIBRARY "ExamplesDLL"

to

LIBRARY "MyModulesDLL"

13. Open the MyModules.sln in any editor window and look for “Examples” and replace this

with “MyModules”. If doesn’t work, delete MyModules.sln and create a new solution.

Then add the two projects, “MyModulesDLL.vcproj” and “MyModulesLib.vcproj”, to

the solution.

14. Add the generated source files from <MYMODULES>\Source\ to the Source Files of

“MyModulesLib.vcproj” and add files from <MYMODULES>\Include to the Include

Files of “MyModulesLib.vcproj”.

At this point, the projects are ready to build. Build the solution, and when complete, you'll have

MyModulesDLL.dll in the <AWE>\Bin\win32-vc100-rel directory.

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 139 of 147
(v01)

9. VectorLib and ModuleHelperLib

These libraries contain a collection of useful functions for developing custom audio modules. In

fact, much of the Audio Weaver module library is built upon these functions. At a minimum,

each function is implemented in C to provide functionality on the PC and baseline performance

on embedded processors. In some cases, functions have been optimized in assembly for specific

processors.

The functions provided fall into 4 broad categories

Vector library – basic signal processing operations that operate on blocks of data. There

are separate floating-point and fractional functions. See VectorLib.h.

Fractional math library – code which emulates fractional arithmetic on the PC. This is

used to first develop Blackfin modules on the PC. See FractMath.h.

Filter design library – filter design and coefficient calculation routines for basic filter

types. In floating-point or double precision. See ModuleHelperLib.h

Math helper library – floating-point versions of the math library. Used on the PC. See

MathHelper.h.

The audio module library can be considered one level higher in abstraction compared to the

vector library. There is some loss of efficiency since it introduces another function call.

However, there is a significant benefit since a single vector function may be used by multiple

modules. This allows the several module processing functions to be written in C and only

requires a single vector function to be written in assembly. Furthermore, adding support for

other processor families in Audio Weaver is then primarily a matter of optimizing the vector

library and not rewriting a large number of individual module functions.

Refer to the individual header files for a description of each function and its arguments.

##if

preprocessor directive, 17, 95

$IDENTIFIER$, 93

@awe_variable, 31

across

wire allocation, 110

wiring constraint, 91

add_array, 56

add_code_marker.m, 93

add_module.m, 58

add_module_path.m, 89

add_pin.m, 54

add_variable.m, 10, 55

agc_example.m, 32

array

overriding sizes, 57

arrayHeap, 34, 99, 113

arraySizeConstructor, 34, 99, 113

audio module

class name, 36

class structure, 12

dependencies, 15

description, 36

functions, 12

internal functions, 43

internal representation, 38

search path, 89

type definition, 10

variable masks, 11

variable offsets, 11

Audio module

instance structure, 10

audio module m-file, 45

AudioWeaverModule

tag for documentation, 92

awe_addcodemarker.m, 16

awe_deletecodemarker.m, 95

awe_fwMalloc, 77, 113

awe_generate_doc.m, 103

awe_generate_library.m, 15, 85

awe_generate_module.m, 14, 101

AWE_HEAP_FAST, 78

AWE_HEAP_FAST2SLOW, 78

AWE_HEAP_FASTB, 78

AWE_HEAP_SLOW, 78

awe_help.m, 60, 102

AWE_INFO.buildControl, 88

AWE_INFO.displayControl.showHidden,

36

awe_lookupcodemarker.m, 94

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 141 of 147
(v01)

awe_module.m, 36

awe_module_template.c, 16, 92

awe_module_template.h, 16, 92

awe_reorder_variables.m, 90

awe_subsystem.m, 48

BaseClassModule_Constructor, 80

buildFunc

awe_subsystem field, 49

Bypass

audio module function, 12

bypass function

example of custom, 120

bypassFunc, 47

audio module field, 40

bypassFunction

code marker, 96

BypassFunction

C function, 83

bypassFunctionName

code marker, 96

class

audio module field, 43

class name

audio module, 36

class structure

audio module, 12

CLASS_ID_BASE, 14

classID, 11, 13

audio module field, 39

classid_lookup.m, 90

classids.csv, 27, 89

ClassMod_GetNPrivateArgs, 74

ClassMod_GetNPublicArgs, 74

ClassModule_GetModuleState, 69, 81

ClassModule_GetNInWires, 69, 81

ClassModule_GetNOutWires, 69, 81

ClassModule_GetNScratchWires, 69, 81

ClassModule_GetWires, 69, 81

ClassModule_PackArgCounts, 80

className

audio module field, 39

ClassWire_GetBlockSize, 70, 82

ClassWire_GetChannelCount, 70, 82

ClassWire_GetNumSamples, 70, 82

ClassWire_GetSampleRate, 70, 82

clockDivider

audio module field, 39

code markers, 17

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 142 of 147
(v01)

Code Markers, 92

codeMarker

audio module field, 42

connect.m, 50, 59

connection

awe_subsystem field, 49

const

usage, 34

Constructor

audio module function, 12

C function arguments, 79

constructorCode, 34, 99, 125

constructorFunction

code marker, 96

data type

variable field, 33

data types, 32

in C, 68

dependencies

in audio module libraries, 15

derived

usage, 34

description field

audio module, 36

audio module field, 39

discussion

code marker, 97

distinct

wiring constraint, 91

DLL

audio module library, 128

docControl, 104

docInfo

audio module field, 43

Docmentation format

selecting, 104

Documentation

generating, 102

downsampler_example_module.m, 109, 122

drawFunc

awe_subsystem field, 49

drawInfo

audio module field, 43

Dynamic Link Libraries

building, 128

equations

in documentation, 108

Example, 109

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 143 of 147
(v01)

Examples.h, 30

Examples.sln, 18, 128

ExamplesDLL.dll, 128

ExamplesSchema.cpp, 29

ExamplesSchema.sch, 28

fader_example_module.m, 109, 118

fieldNames

audio module field, 43

variable field, 35

flattenOnBuild, 99

awe_subsystem field, 49

format

variable field, 34

FractMath.h, 133

Framework.h, 67

GENDOC, 15, 86

Get

audio module function, 12

C function, 83

get_module.m, 50

get_variable.m, 32, 63

GetFeedbackPinCount, 79

getFunc, 46

audio module field, 40

getFunction

code marker, 97

GetInputPinCount, 79

GetOutputPinCount, 79

GetScratchPinCount, 79

GetWireCount, 79

guiInfo

audio module field, 43

variable field, 34

hasFired

audio module field, 42

hFileDefine

code marker, 97

hFileInclude

code marker, 97

hFileTemplate

code marker, 98

hierarchyName

audio module field, 42

variable field, 33

HTML

documentation format, 104

IDOFFSET, 13, 90

InnerScalerSmoothedExample_Process.c, 22

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 144 of 147
(v01)

InnerScalerSmoothedExample_Set.c, 22

inputPin

audio module field, 39

Insert

code marker, 94

Insert:

code marker, 18

instance structure

audio module, 10

IOAcrossModule_Bypass, 84

IOAllOnesModule_Bypass, 84

IOMatchModule_Bypass, 83

IOMatchUpModule_Bypass, 84

isArray

variable field, 35

isComplex

variable field, 33

ISCOMPLEX, 32

isHidden

audio module field, 41

variable field, 35

ISHIDDEN, 32

isLive

variable field, 34

isLocked

audio module field, 43

variable field, 35

isPrebuilt

awe_subsystem field, 49

isPreset

audio module field, 41

variable field, 35

isTopLevel

audio module field, 42

isVolatile

variable field, 34

lah_limiter_example_module.m, 109, 124

LaTeX

equations, 108

make_examples.m, 15, 109

mask

audio module variables, 11

MASK_

audio module, 83

MathHelper.h., 133

MATLAB

supported versions, 6

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 145 of 147
(v01)

memory allocation

from C, 77

memorySegment, 34

mfileDirectory

audio module field, 39

mfileName

audio module field, 39

mfilePath

audio module field, 39

ModClassDescriptor, 73

ModClassModule, 73

mode

audio module field, 39

ModScalerSmoothedExample.c, 24

ModScalerSmoothedExample.h, 23

module

awe_subsystem field, 49

module libraries

generating, 85

MODULE_ACTIVE, 81

MODULE_BYPASS, 81

MODULE_INACTIVE, 82

MODULE_MUTE, 81

ModuleHelperLib, 133

ModuleHelperLib.h, 133

ModuleInstanceDescriptor, 68

moduleName

awe_subsystem field, 49

name

audio module field, 38

variable field, 33

new_pin_type.m, 51

nIO, 79

outputPin

audio module field, 40

parameter

usage, 34

peak_hold_example_module.m, 109, 112

pin

data structure, 51

documentation, 61

new_pin_type.m, 51

range information, 51

postConstructorFunction

code marker, 97

postProcessFunc

awe_subsystem field, 49

postProcessFunction

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 146 of 147
(v01)

code marker, 98

preBuildFunc, 47

audio module field, 40

preProcessFunc

awe_subsystem field, 49

preProcessFunction

code marker, 98

preprocessor directives, 17

Process

audio module function, 81

processFunc, 45

audio module field, 40

processFunction

code marker, 97

range

variable field, 33

Requirements, 6

Sample, 69

C data type, 69, 80

scaler_example_module.m, 109

scaler_smoothed_example_module.m, 9, 19

Schema file, 13

SchemaBuilder.exe, 88

scratchPin

audio module field, 40

Set

audio module function, 12

C function, 82

set_variable.m, 63

setFunc, 46

audio module field, 40

setFunction

code marker, 97

showHidden

AWE_INFO, 36

size

variable field, 33

srcFileDefine

code marker, 98

srcFileInclude

code marker, 98

srcFileTemplate

code marker, 98

state

usage, 34

target_system.m, 51

targetInfo

audio module field, 42

DSP Concepts, Inc. Audio Weaver Module Developers Guide

 147 of 147
(v01)

variable field, 35

targetSpecificInfo

awe_subsystem field, 49

template file, 16

template substitution, 16

preprocessor, 95

Template Substitution, 92

top-level systems, 51

unique_classes.m, 99

units

variable field, 34

unsatisfiable dependencies, 87

usage

variable field, 33

USESDLLS, 85, 86

variable

internal representation, 33

specifying range information, 51

variable field

audio module field, 40

variableName

audio module field, 40

VectorLib, 133

VectorLib.h, 133

VisualStudio

supported version, 6

wire allocation

clarifying, 126

WIRE_IN, 45

wireAllocation

audio module field, 40

WireInstance, 69

Word

documentation format, 104

