
DSP Concepts Audio Weaver Module User’s Guide

 Page: 1 of 163

AUDIO WEAVER

MODULE USER’S GUIDE

(October 2016)

DSP Concepts Audio Weaver Module User’s Guide

 Page: 2 of 163

Copyright Information

© 2016-2017 DSP Concepts, Inc., ALL RIGHTS RESERVED. This document may not be reproduced in any form

without prior, express written consent from DSP Concepts, Inc.

Disclaimer

DSP Concepts, Inc. reserves the right to change this product without prior notice. Information furnished by DSP

Concepts is believed to be accurate and reliable. However, no responsibility is assumed by DSP Concepts for its

use; or for any infringement of patents or other rights of third parties which may result from its use. No license is

granted by implication or otherwise under the patent rights of DSP Concepts, Inc.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 3 of 163

TABLE OF CONTENTS

Introduction ... 5

How to use this guide ... 5

Other Audio Weaver Documents .. 5

Module Library Organization .. 5

Module Browser overview .. 6

Basic Module Concepts.. 7

Viewing Module Properties .. 7

Tunable Variables and Inspectors ... 8

Step Values and Fine Controls .. 8

Viewing Module Variables on Canvas ... 8

Module Status ... 9

Wires and Control Signals ... 9

Block Size .. 11

Smoothed modules ... 12

Modules in Browser Order .. 13

Annotation .. 13

Delays .. 14

DSP Concepts IP .. 16

Dynamics ... 17

Filters .. 25

Frequency Domain .. 55

Gains ... 79

Logic .. 84

Math ... 93

Misc ... 102

DSP Concepts Audio Weaver Module User’s Guide

 Page: 4 of 163

Mixers ... 107

Multirate ... 109

Signal Management .. 115

Sinks .. 126

Spatial ... 130

Statistics .. 130

Subsystem ... 131

Sources .. 131

Larger Examples ... 136

Speaker Spreader .. 136

Loudspeaker Processing - Stereo .. 138

Oversampling Peak Detection ... 142

Automatic Gain Control .. 144

Microphone De-essing .. 153

Microphone De-Popper .. 156

Feedback Example .. 157

Module Index ... 160

DSP Concepts Audio Weaver Module User’s Guide

 Page: 5 of 163

INTRODUCTION

This document is an overview of the audio modules included in Audio Weaver. It is intended for training users how

to get the most out of the module library by providing a high-level overview with in depth examples of the

modules. Modules build up sophisticated audio functions and systems in a matter of clicks, similar to circuit design

or using lego blocks. Further information is available in the detailed HTML documentation provided with the Audio

Weaver installer. For more information about a specific module, run Audio Weaver Designer and right click a

module to view its “Help” file.

HOW TO USE THIS GUIDE

This guide is separated into sections as outlined in the table of contents: Chapter 2 starts us off with basic

module concepts. It also discusses designer workflow including the module properties window and adjusting

parameters. Chapter 3 explains each module folder in the browser, as well as how to pick the correct

module as many of the modules are similar. To be clear about the differences between the modules, the

end of each section in Chapter 3 includes a table that summarizes the differences between the modules in

that folder. Chapter 4 provides in depth examples of common processing techniques and algorithms so the

user can have a taste of the capabilities of Audio Weaver. Usage tips are bolded throughout this guide for

ease of reference.

OTHER AUDIO WEAVER DOCUMENTS

This document describes the Audio Weaver modules and module library. The MATLAB scripting interface is

described in Audio Weaver Matlab API. Read more about the graphical designer in Audio Weaver Designer

User’s Guide.

MODULE LIBRARY ORGANIZATION

Audio samples are represented as 32-bit values. Several different data types are available:

Float32 – standard 32-bit floating-point with 1 sign bit, 8 exponent bits, and 23 mantissa bits.

Int32 – Standard twos complement 32-bit integer. The signed values are in the range [-231 , +(231-1)].

Fract32 – Fractional representation where values are scaled in the range [-1 +1). This is standard integer

representation with an implied scale factor of 2-31.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 6 of 163

At the top of the module browser,

there is a checkbox to filter based on

the different module data types (see

left). This will filter out modules for

hardware that operates on specific

sample data type (fract32 for fixed-

point). The integer module libraries

are typically used for control

operations and work on both fixed-

point and floating-point targets. The

type convert module allows any data

type to transfer into the others. This

may be destructive if converting to a

type with lower resolution.

MODULE BROWSER OVERVIEW

Audio Weaver modules are organized into separate browser folders based on their function. The folders are

arranged in alphabetical order titled with a short description of the contents. A search bar can be found

directly above the browser window. To use the search bar, type the name or some common tag for the

wanted module and press enter.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 7 of 163

BASIC MODULE CONCEPTS

Audio Weaver Designer has two modes: Design mode and Tuning mode. In Design mode, design signal flow: by

adding modules, making connections, and setting parameters. Tuning mode occurs when the designed layout is

run. The layout can only be run if all modules have valid connections. Run the layout by clicking the play button

at the top or by right clicking the canvas and selecting “Build and Run.” Tuning mode allows for parameter

changes only: no changes to the wiring or structure of the block diagram.

VIEWING MODULE PROPERTIES

An audio module gets instantiated when dragged to the canvas from

the Module Browser, located on the left hand side of the canvas.

Module arguments can only be changed in Design mode and affect

memory allocation, pins, and wiring. Module variables are tunable

parameters which can be changed in either mode. Arguments tend to

define memory allocation for the module, which can’t be changed

during runtime. For example, in an FIR filter, the length of the filter

(number of taps) is specified as an argument. This length affects

memory allocation and as a result setting these arguments is only

allowed in Design mode. The FIR coefficients (a variable) can change at

any time.

After a module is instantiated, change its arguments and variables by

right-clicking and selecting “View Properties” (see right) which will

open up the properties manager at the bottom (see below).

In the Matlab code for an FIR module, the module properties maps directly to the function arguments:

M=fir_module(NAME, L)

DSP Concepts Audio Weaver Module User’s Guide

 Page: 8 of 163

TUNABLE VARIABLES AND INSPECTORS

Most modules also have an associated Inspector. The inspector allows changing of

the module’s tunable parameters. Inspectors can be used in Design mode and

Tuning mode by double-clicking on a module, or by right-clicking and selecting

“Inspector.” The inspector for an FIR filter holds the filter coefficients (see right).

These parameters can also be changed under the “Variables” tab in the module

properties window.

Save a set of inspectors for later by using inspector groups. Usually, many

inspectors are shown at the same time. To use an inspector group, click ‘Inspector’

on the top menu of Designer. Here inspector group names are managed. The

inspector group will save the inspector configuration, including positioning. To

reposition an inspector group, simply adjust the inspectors and save the group

again with the same name.

STEP VALUES AND FINE CONTROLS

Within the properties window, in the variables tab, many modules will have range attributes, with an

optional ‘step’ to determine adjustable resolution for the slider or knob control. The Max and Min values

determine the allowable tuning range, and can be adjusted at any time.

Fine controls of the tuning interface relies on a hotkey and click combination. Press and hold ctrl and scroll

the mouse wheel on the knob/slider to use fine tuning. For coarse tuning, hold shift and do the same. For

adjusting with mouse clicks, the tuning is controlled by distancing the cursor away from the knob while

tuning. This will allow for smaller changes to occur, as more distance is needed to create the angle.

VIEWING MODULE VARIABLES ON CANVAS

A useful design feature is to see variable values without

having to open all of the inspectors. The original design

appears as:

To show variable values, select “Module Variables” under the

View menu. With variables shown, it appears as:

DSP Concepts Audio Weaver Module User’s Guide

 Page: 9 of 163

MODULE STATUS

Each module has an associated runtime status with 4 possible values:

Active –The module's processing function is being called. This is the default behavior when a module is

first instantiated.

Muted – The module's processing function is not called. Instead, all of the output wires attached to the

module are filled with zeros.

Bypassed –The module's processing function is not called. Instead, the module's input wires are copied

directly to its output wires. Some modules use an intelligent generic algorithm which attempts to

match up input and output wires of the same size. Other modules implement custom bypass

functions.

Inactive –The module's processing function is not called and the output wire is untouched. This mode is

used almost exclusively for debugging and the output wire is left in an indeterminate state. Use

with caution!

Changing the module status is useful for debugging and making

simple changes to the processing at run-time. The module status can

be changed in both Design mode and Tuning mode.

The Module Status can be changed by right-clicking on a module

and selecting “Module Status ”. To change the module status of a

group, select multiple modules(including subsystems) with drag and

select or by pressing ctrl, and right-click to change the status of all

selected modules.

WIRES AND CONTROL SIGNALS

Connections between audio modules are called wires and correspond to buffers of data on the target. A

wire has the following properties:

-number of channels

-block size

-sample rate

-complexity (real or complex values).

Most modules can operate on an arbitrary number of channels, block size, and sample rate. The number

of channels and block size of a wire is called its size. Show wire properties using the ViewWire Types

menu item.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 10 of 163

PIN PROPAGATION

Wire information is resolved through a process known as pin propagation. The wire information is

known from the system input and this information is propagated in module order until it reaches the

system output pin. To trigger pin propagation, click on the Propagate changes button () on

the toolbar. Alternatively, right-click on an empty part of the canvas and select “Redraw” from the

context menu. If there is a wiring error and pin propagation is unable to complete, an error sound

will play. To find out more details to this error, run the system.

FEEDBACK WIRES

Feedback occurs when a wire is routed

backwards to an input earlier in the

system. Feedback wires must be

manually specified1. To make a

feedback wire, right click a wire and

select “Feedback”. The wire will turn

blue to indicate that it is a feedback

wire. For each marked feedback wire,

Audio Weaver will create a dedicated

buffer to store its data. At system

startup, data in the wire is initialized to all zeros.

If a feedback wire is left unmarked, the following error

will appear after an attempt to build the system:

To solve this, locate the feedback point in the block

diagram and then mark the feedback wire.

1 The manual specification of feedback wires is a limitation of the way that Audio Weaver resolves wiring

information. Recall that Audio Weaver starts at the input of the system and then propagates wire size information

module-by-module. When it first reaches a feedback point, it will have not yet resolved the size information for

that wire and cannot proceed further. As a result, wires must be manually marked as feedback.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 11 of 163

Wire size information must be set using the

“Feedback Properties” dialog which is reached by

right-clicking on the feedback wire. The following

dialogue box opens, allowing the ability to set the

wire’s block size, number of channels, sample

rate, data type, and whether or not it is complex.

This should match the pins that the wire is

connecting.

BLOCK SIZE

Each hardware target has a fundamental block size to

specify how many samples per block are handled by the

real-time audio I/O functions. This is shown on the Server

window when the Server launches. (see right)

Layouts can use any multiple of the target’s fundamental

blockSize. Change blockSize at any time by adjusting the

hardware input parameters in SYS_in. BlockSize

information is propagated from the input pin, through the

modules, to the output pin. The blockSize of the output

pin is set by pin propagation2.

Interpolator and decimator modules increase or decrease

the blockSize. Some modules also output a single value

control signal (blockSize = 1). For example, the

BlockStatistics module can be configured to output the

average value of a block of samples. This data will be one

value per block. Control signals are drawn with dashed lines

instead of solid lines.

2 The exact behavior is controlled by the checkbox “Validate system output pin” in Layout->Layout Properties

dialog. There is the option of inheriting the output pin size from the wire attached to it (Validate system output

pin unchecked; this is the default). Or force the wire to match the output pin (Validate system output pin checked.)

DSP Concepts Audio Weaver Module User’s Guide

 Page: 12 of 163

In the example below, the BlockStatistics1 module computes the RMS level of the signal and a lookup table

(TableInterp1) turns this into a linear gain to be applied by Scaler1. The signals into and out of the lookup

table module are control signals.

SMOOTHED MODULES

Some modules have built in smoothing to prevent pops and clicks during tuning. Smoothing is implemented

using a first order IIR filter:

𝑔𝑛=1−𝛼𝑔𝑛−1+𝛼𝑡[𝑛]

where 𝑔[𝑛] is the instantaneous smoothed gain and 𝑡[𝑛] is the discontinuous target gain. The coefficient 𝛼

controls the smoothing process and depends upon the smoothingTime and the sampling rate. Smoothed

modules take additional processing: only use these when tuning is needed during runtime.

The figure below shows a ScalerSmoothed module with a 10 msec time constant. The blue line is the

instantaneous gain change from 1.0 to 2.0 and the red curve is the result of smoothing.

Time constants correspond to the familiar definition of time constants used in analog filters:

𝑔𝑡=𝑒−𝑡/𝜏

Where 𝜏 is the time constant. After 1 time constant has elapsed the gain has decayed by 𝑒−1 = 0.3679.

After 3 time constants, the gain has decayed by 95%, because 𝑒−3=0.0498. Thus, it takes several time

constants for the gain change to fully take effect and this is reflected in the figure above.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 13 of 163

MODULES IN BROWSER ORDER

Audio Weaver has over 400 different types of modules available. This section organizes the modules into standard

types with brief descriptions of each. Our focus will be on how to use the modules, with information provided in

tables to determine the differences between similar modules.

ANNOTATION

In order to keep notes within layouts, Designer supports text boxes, rectangle panels, and arrows. While there are

many ways to use these, the standard is to break the layout file into “processing sections” with information on

how to tune the design. Annotation is also good for keeping “presets” or “modes” written down on the canvas.

DOCUMENTING LAYOUTS

To use the annotations, drag them onto the browser. Rescale

them and position them accordingly. To edit a text box, double

click it and type away on the canvas. To change text size or

annotation color/width, check the properties panel for each

annotation. In order to keep a standard across the design file, it is

recommended to establish a standard annotation (i.e. get the

fonts/size/color set up) and copy/paste this to keep the style

throughout the annotations.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 14 of 163

DELAYS

Delay modules hold the input signal for some amount of time using an internal circular buffer. This buffer is

instantiated with a size maxDelay. At runtime, currentDelay is set to control the time constant for the maxDelay

buffer. Most delays update currentDelay instantaneously, but smoothed(interpolated) delays are provided if the

final product needs a varying delay.

Delay time type can be int or fract32 samples, int or fract32 milliseconds, or blocks. Input type also varies, meaning

some modules take Float audio data, some take Fract32 audio, and some take any type (including int).

For most cases, use Delay msec or Delay samples. Modulated delays come into play for making musical effects.

ALLPASS DELAYS

Allpass Delays use feedback and feedforward in order to vary the phase of a signal without changing its magnitude

or its position in time. Our allpass delays have a coef variable which determines the amount of gain on the

feedback/forward mix factor. Allpasses are commonly used in audio effects like chorus, flanger, reverb, and stereo

effects. Our allpasses also have the option of outputting the delayed signal (in cases where time position and

phase should change).

MODULATED DELAYS

Modulated Delays come with a modulation control pin. This control pin feeds the modulation factor mod, limited

in depth by modDepth. A common use case is to provide the mod pin with a random or oscillator source that varies

from -1 to 1, allowing the delay to vary. This oscillation reduces harmonic artifacts from feedback delay lines.

DELAY TAPS

Delay Taps create an evenly spaced N amount of delays, which are all interleaved into separate ‘delay channels.’

This is useful for adaptive FIR filters and prediction algorithms due to the consistency in delay length.

LOW MEMORY DELAYS

Since delays tend to be memory intensive, memory efficient options are provided. Modules labelled with a 16 in

the name use half of the bits (compared to 32 bit data). This results in about half the size on the heap, at a cost of

lost amplitude resolution. Our most memory efficient delay for multiple lines is the Delay State Writer16. This uses

a circular buffer and multiple pointers instead of multiple buffers in memory, all while using 16-bit resolution.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 15 of 163

TABLE OF DELAY MODULES

Module Name Input type Delay Time Type Time Interpolation Modulation Control Delay Tap Low Mem

Allpass Delay Floating point Integer Samples (none) (none) (none) (none)

Allpass Delay Fract32 Fract32 Integer Samples (none) (none) (none) (none)

Allpass Delay16 Floating point Integer Samples (none) (none) (none) yes

Allpass Delay16 Fract32 Fract32 Integer Samples (none) (none) (none) yes

Allpass Delayci Floating point Fractional Samples Cubic yes (none) (none)

Allpass Delayi Floating point Fractional Samples Linear yes (none) (none)

Block Delay Any Blocks (none) (none) (none) (none)

Delay Any Integer Samples (none) (none) (none) (none)

Delay Interp Fract32 Fract32 Fractional Samples Linear and Cubic yes (none) (none)

Delay Msec Any Fractional Mill iseconds (none) (none) (none) (none)

Delay Ntap Any Integer Samples (none) (none) yes (none)

Delay NTap16 Fract32 Fract32 Integer Samples (none) (none) yes yes

Delay Reader Integer Fractional Samples (none) (none) (none) (none)

Delay State Writer Any Integer Samples (none) (none) (none) (none)

Delay State Writer16 Any Integer Samples (none) (none) (none) yes

Delay16 Any Integer Samples (none) (none) (none) yes

Delayci Floating point Fractional Samples Cubic yes (none) (none)

Delayci Fract32 Fract32 Fractional Samples (none) (none) (none) (none)

Delayi Floating point Fractional Samples Linear yes (none) (none)

Fractional Delay Fract32 Fract32 Fractional Samples (none) (none) yes (none)

Interpolated Delay Floating point Fractional Samples Linear and Cubic yes (none) (none)

DSP Concepts Audio Weaver Module User’s Guide

 Page: 16 of 163

DSP CONCEPTS IP

LONG FIR FILTER

This zero latency FIR allows for large FIR filters by breaking a large convolution into multiple smaller convolutions.

This module supports one channel of audio, and the blocksize must be a power of two. The larger the blockSize,

the more efficient the processing. It expects time domain FIR coefficients, and will automatically convert these

into the frequency domain for processing. It is recommended to load the coefficients as a text file using the

properties browser to edit the FIR array, rather than typing them in by hand.

WOLA FORWARD FILTERBANK (ANALYSIS)

This module is used to convert a time domain(real number) signal

into frequency domain(complex number) bins. The output of this

module will operate according to this blocksize. From this point on,

the data is complex. See the Frequency Domain folder for modules

that operate within the complex domain. The first and last bin

represent DC, and have no complex data.

WOLA INVERSE FILTERBANK (SYNTHESIS)

This module will convert a block of frequency bin(complex number) data into the time

domain(real number). This is normally paired with WOLA Forward Filterbank (Analysis). Be sure

to keep the WOLA Forward and Inverse sizes the same. More information is provided in the

Frequency Domain section.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 17 of 163

DYNAMICS

Dynamic modules de/emphasize the amplitude structure of data. AGC stands for Automatic Gain Control. It differs

from standard gain modules in that the gain value changes by itself over time, and the gain can scale loud volumes

separate from quiet volumes. This ‘warping’ of the volume information can regulate perceived volume, maximize

output, add a safety stage before the signal hits the speakers, remove low volume noise, and manage sound

source priority like ducking music behind a dialog track. This section of the guide will cover the modules in the AGC

folder: compressor core, envelope followers, limiter core, expander(and noise gate), ducker, and agc core. It will

then go over building a custom AGC, and finally optimize an AGC to run at reduced computation cycles.

The dynamics modules operate with different gain variation speeds and different magnitude reference signals. All

dynamics modules with the suffix ***Core do

not generate audio data, but instead output

volume data to be sent to a scaler control pin or

an AGC Multiplier. The following diagrams

represent the typical input/output response for

various AGC types.

Compressor – reduce the peak dynamic range

of a signal

Downward expander (and noise gate) –

reduce small signal levels and behave as

noise gates

DSP Concepts Audio Weaver Module User’s Guide

 Page: 18 of 163

Limiter – restrict peak signal levels to avoid

digital clipping (limiters generally have a

horizontal or flat slope, which means high

ratio)

Ducker - use a trigger signal to determine

when to boost or reduce gain of another

signal.

AGC Core– adjust the gain to keep the

signal within a specified RMS range

DSP Concepts Audio Weaver Module User’s Guide

 Page: 19 of 163

COMPRESSORS

A compressor reduces the signal’s dynamic range, meaning that it lowers the level of loud signals and boosts quiet

ones, reducing the difference between loud and soft signals. Make-up gain is usually applied after for increasing

the perceived loudness. This can be used for scenarios when keeping the overall volume low is desired but hearing

small details is still important, such as night-time movie

watching. The behavior of the compressor is best

understood by looking at its input-output response:

Above the threshold the compressor reduces the signal

level; below the threshold the compressor increases

the signal level (it’s expanding the system). This brings

all output signals closer to the threshold level and

reduces the overall dynamic range. The

AGCCompressorCore module is wired the same way as

the limiter module, receiving its input from an Abs or

MaxAbs module and outputting to a multiplier, as

shown below:

DSP Concepts Audio Weaver Module User’s Guide

 Page: 20 of 163

ENVELOPE MODULATION

Envelope modulators control the impact that relative peaks have. The Attack Release module uses

attackTimeInitial and attackTimeFinal to smooth peaks. The Attack Decay Sustain Release is similar, but also

includes 2 stages in between the attack and release. Decay lowers the level into a hold that is based on the sustain

level. After this hold ends, the release occurs.

LIMITERS

The AGCLimiterCore module is parameterized by its threshold, ratio,

gain, knee depth, attack time, and decay time. The AGCLimiterCore

module computes the time varying gain.

Take

the

absolute value of the signal so

that the AGCLimiterCore module

treats positive and negative

signals equally. The first pin on the

AGCMultiplier is the gain to apply and

the second input is the audio signal itself.

(standard arrangement for a mono limiter)

DSP Concepts Audio Weaver Module User’s Guide

 Page: 21 of 163

When the input is below the threshold the line has a slope of 1 indicating that the signal level is unchanged. Above

the threshold the slope drops indicating that the output level will be reduced compared to the input level. Limiters

have a parameter called the “ratio” referring to the reciprocal slope of the gain ratio above the threshold. A high

ratio provides hard limiting, close to 1 provides gentle limiting.

The limiter applies a piecewise function to determine

its gain: at a specified threshold, the slope changes.

The transition between sections is smoothed by a

connecting polynomial section, often referred to as

the “knee”. The knee provides a gentle polynomial

interpolation between the threshold and the

requested slope. The kneeDepth parameter controls

the extent of the polynomial section. The polynomial

starts at threshold-kneeDepth and ends at

threshold+kneeDepth.

The speed with which a limiter responds to an increase in sound level is described by its “attack time”. The lower

the attack time, the faster the limiter will respond to the sound level rising above its threshold. Similarly, decay (or

release) time describes the speed with which the limiter’s effect is relaxed after the sound level drops back under

its threshold. The time behavior of the dynamics processors is implemented with first order IIR smoothers with

different attack and decay coefficients. The above image shows example attack and decay curves.

DOWNWARD EXPANDER

The DownwardExpanderCore module is also a limiter

with a piecewise gain, but its piecewise function is

different. Whereas most limiters use a slope of 1

below a threshold and a reduced slope above it, this

module features a very steep slope below its

threshold and a slope of 1 above it. Rather than

reducing the level of loud signals, this reduces the

level of quiet signals. The DownwardExpanderCore

module’s response behavior is shown right:

DSP Concepts Audio Weaver Module User’s Guide

 Page: 22 of 163

One use of this module is for filtering out low-level noise while retaining a louder signal.This is very useful for

eliminating “hiss,” low level background noise in a signal. Like most dynamic processing modules, the

DownwardExpanderCore is designed to take its input from the MaxAbs module and output its gain as an input to

the AGCMultiplier module. Shown below is an example of a noise gate which eliminates low level signals.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 23 of 163

AGC CORE

This module has a slowly varying volume control which transfers the input signal level towards a

targetLevel, a specified RMS level. The input RMS is smoothed via the smoothing time variable. This allows the gain

to change gradually. The gain is limited to the range [-maxAttenuation and maxGain]. The ratio control determines

the speed of the gain change for all signals above the activation Threshold. When the level of the input signal falls

below activationThreshold, the AGCCore holds the last gain setting. If the enableRecovery checkbox is checked,

the gain will slowly return to 0 dB when not activated. The rate of return is governed by recoveryRate.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 24 of 163

TABLE OF DYNAMICS MODULES

Module Name Input type supported Gain Variation Speed Vol. Reference Output Type

AGC Core Floating Point Slow RMS Gain Control Data

AGC Multiplier Floating Point Instant Pin Controlled Audio Data

AGC Multiplier Fract32 Fract32 Instant Pin Controlled Audio Data

AGCAttack Release Fract32 Fract32 Variable Controlled Peak Audio Data

AGCCompressor Core Fract32 Fract32 Variable Controlled Peak Audio Data

AGCCore Fract32 Fract32 Slow RMS Gain Control Data

Attack Decay Sustain Release Floating Point Variable Controlled Peak Audio Data

Attack Release Floating Point Variable Controlled Peak Audio Data

Compressor Core Floating Point Variable Controlled Threshold Audio Data

Downward Expander Core Floating Point Variable Controlled Threshold Audio Data

Downward Expander Core Fract32 Fract32 Variable Controlled Threshold Audio Data

Ducker Floating Point Variable Controlled Trigger Audio Data

Ducker Fract32 Fract32 Variable Controlled Trigger Audio Data

Limiter Core Floating Point Variable Controlled Peak Audio Data

Limiter Core Fract32 Fract32 Variable Controlled Peak Audio Data

Noise Gate Core Floating Point Variable Controlled RMS Threshold Audio Data

Variable Attack Release Floating Point Variable Controlled Peak Audio Data

DSP Concepts Audio Weaver Module User’s Guide

 Page: 25 of 163

FILTERS

 The Audio Weaver Filters folder lists over 60 filters. They have been broken down according to user

needs, with the folder labels Adaptive, Calculated Coeffs, Controllable, High Precision, Raw Coeffs, and list the

most commonly used filters. The Adaptive folder contains the LMS module, an adaptive filter with tracking

capabilities. For those users less experienced with designing filters, the Calculated Coeffs filters take in frequency

information, Q, Gain, and type, similar to tuning a filter in a DAW. Users with more DSP background can use the

Raw Coeffs filters to tune filters with mathematical information. The most frequently used filters are the

ButterworthFilter (highpass, lowpass, allpass), SecondOrderFilterSmoothed, with 20 different filter types, and the

SecondOrderFilterSmoothedCascade: multiple 2nd order filters in series.

ADAPTIVE (LMS)

The LMS filter predicts the FIR of a system whose transfer function is not given. It’s input and output adapt or

“predict” what the system response is. Filter weights are updated over time based on mu speed, higher numbers

being the faster update speed. Higher numtaps give higher chance to converge with the optimum filter

weight(meaning less error). The error can be tracked realtime with the errorSignal output. The module comes with

an option to output the predicted “coeffs”. The following system shows white noise being ran through a 10 point

FIR. The LMS will predict the FIR coefficients, and sinks will display the error and coeff function.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 26 of 163

 This sink shows the coeff prediction.

The LMS

is trying

to predict

this FIR

response.

The Error2 display shows a value of -125 dB, which

means that our signal is very accurate. The sink to

the right displays this as well.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 27 of 163

FILTERS WITH CALCULATED COEFFS

Audio Weaver has a several filters with built-in design equations. These filters are implemented using Biquad or

BiquadCascade modules behind the scenes and the filter coefficients are computed by the design equations based

on high-level filter specifications. The design equations use the sample rate on the input wire when computing

coefficients. The following sections describe each of the calculated coeffs modules.

ALLPASS PAIR

The Allpass Pair module creates a pair of allpass filters with the special property that their sum and difference form

a doubly complementary highpass-lowpass filter pair. When used in conjunction with the Sum and Difference

module (available in the Math folder) this Allpass Pair module can be used to construct more complex structures

such as N-way crossovers and filter banks. The following design mixes one channel of white noise into two “bands”

of white noise using this technique. The sink is an FFT showing the frequency response of the signal.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 28 of 163

AUDIO WEIGHTING FILTERS

The AudioWeighting module is located under Filters/Calculated Coeffs This module applies different standard

audio weighting to a signal. The available weightings are selectable from the inspector and include: A, B, C, and D-

weighting, as well as ITU468, LeqM, and ITU 1770. The WeightingFilter is used for noise measurements and

broadcast loudness applications. The following frequency responses display each weighting’s filter.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 29 of 163

CROSSOVER FILTER

A crossover is a special type of filter that splits a signal into multiple bands, while sustaining a total gain of 0 dB. It

will boost the level of one frequency band as the other drops to compensate to 0 dB gain. This behavior is shown

in the figure below.

Crossovers are used in loudspeaker applications to separate signals into different frequency bands to be output via

woofers, mid-range, and tweeter speakers. They are implemented using ButterworthFilter (odd-order) or Linkwtiz-

Riley (even-order) filters. Crossover filters can be made manually using individual filters. By cascading filters and

applying an allpass filter during other lane filter stages (shown below), more crossover points can be added and

the signal split into more frequency bands, while retaining the unity gain property.

Alternatively, use the crossover

module which contains all of the

needed filters. The Crossover

Filter module allows the user to

set the type of filter, number of

output bands, and filter order,

specified in the module’s

properties. Crossovers are used

for separating different frequency

bands of a signal. The example

below demonstrates a crossover

module being used to split a signal into a high band above 250 Hz and a low

band below 250 Hz. The sum of the levels of the two bands is always 0 dB. As

the input frequency changes near 250 Hz, one channel’s level drops and the

other smoothly increases to compensate to 0 dB.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 30 of 163

 This is the same behavior as using two ButterworthFilter filters:

The Crossover Filter module allows the configuration of 2 or more output channels. The module will then be

drawn with 3 output pins. The top pin is the low frequency; the center pin is the mid-range, and the bottom pin

is the high frequencies. The inspector shows two cutoff frequencies: between the low and mid-range; and

between the mid-range and high frequencies. For example, if implementing a 3-way loudspeaker crossover,

configure it as:

DSP Concepts Audio Weaver Module User’s Guide

 Page: 31 of 163

EMPHASIS FILTER

The EmphasisFilter module implements a pre-emphasis or de-emphasis, used for noise reduction. The cutoff

frequency is specified by the time constant tau, which is set in the inspector. The examples below show emphasis

and de-emphasis filters with 75 microsecond time contants.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 32 of 163

GRAPHIC EQS

The GraphicEQ module splits up a signal into different bands and independently attenuates or amplifies each band.

Under module names and arguments, the number of bands and the order of each filter are set. The bands are

logarithmically spaced across the Nyquist frequency of the input signal. Each band’s gain can be set in the

inspector. This EQ can automatically adjust its bands based on the lowEdge and highEdge arguments. After setting

this to the desirable range, change the resetCenterFreqs flag to ‘1’. This will recalculate the bands, throwing away

all slider data (so change the bands before tuning).

TIP – The more bands there are, the higher the filter order should be to better isolate the bands.

The GraphicEQBand module applies a gain to a specific frequency band. This module is the building block of the

GraphicEQ. In the inspector, the gain, lower edge frequency and upper edge frequency are specified. The filter

order is specified from by the module properties. This module is not typically used directly; use GraphicEQ instead.

HILBERT

The Hilbert module can be considered a filter which simply shifts phases of all frequency components of its input

by -n/2 radians. This operates on complex (real and imaginary) data input and output.

PINK FILTER

The PinkFilter is a low pass filter with a -3dB/octave slope. It is used to generate pink noise from white noise.

THREE BAND TONE CONTROL

The ThreeBandToneControl module is similar to the GraphicEQ except there are only 3 bands. The low, mid, and

high bands’ middle frequency and gain are set in the inspector. The ThreeBandToneControl module is very efficient

and uses first order shelf filters for the low and high frequency gain adjustments. The middle band is a simple gain

and the net result is that the ThreeBandToneControl takes as much computation as a single BiquadSmoothed filter.

CONTROLLABLE FILTERS

The filters presented thus far get their high level design parameters from the inspectors. At times, it is useful to

have a filter whose parameters are controlled by other signals or modules in the layout, such as a source or a

hardware input pin. This is called a controllable filter. The controllable filters folder includes a first and second

DSP Concepts Audio Weaver Module User’s Guide

 Page: 33 of 163

order filter, along with a lowpass filter, which all have control pins for their frequency. The second order filter can

also enable more pins, like Q and Gain depending on the module arguments.

FIRST ORDER FILTER CONTROL

The FOFControl module implements a first order lowpass or highpass filter. The control pin specifies the cutoff

frequency of the filter and the design equations are executed every block allowing very rapid updates.

LPF CONTROL

The LPF Control module is a time varying first order low pass with smoothly varying frequency based on the input

pin.

SECOND ORDER FILTER CONTROL

The SOFControl filter is built upon the SecondOrderFilterSmoothed module. It has a fixed filterType which is

specified on the inspector. Under module arguments, specify which of the filter design parameters should be

obtained via input pins:

Parameters which aren’t specified by input pins are specified via the variables and properties tab. The SOFControl

module uses deferred processing to compute the filter coefficients. That is, the design equation is not executed

every block. Rather, when the control data on the input pin changes, the module sets a bit in its instance structure

which causes the design function to be called from non-real-time code. This reduces the peak CPU load at the

DSP Concepts Audio Weaver Module User’s Guide

 Page: 34 of 163

expense of having a slower update rate. In typical applications, the module will update every few 10s of

milliseconds. If updating needs to happen more quickly, then use the FOFControl module or the ParamSet module

coupled with a SecondOrderFilterSmoothed module.

A very common use of the SOFControl module is within a perceptual volume control. As the volume of the system

is reduced, overall spectral balance should be maintained. Due to the sensitivity of the human auditory system,

low frequencies and high frequencies appear to drop off more quickly than mid frequencies. Thus, to maintain the

overall spectral balance, boost low and high frequencies as the volume level decreases. The VolumeControl

module accomplishes this with a fixed boost table. For finer control over the boost, use a TableInterp module

together with a SOFControl filter as shown below. The control signal “Volume” specifies the listening level and

ranges from 0 (loud) to -80 (soft). The lookup tables convert the Volume setting into low frequency and high

frequency boosts which are applied using the SOFControl module. The low frequency SOFControl module

implements a peaking filter at 40 Hz and the gain is taken from the control pin. The high frequency SOFControl

module implements a high shelf in which the gain is taken from the control pin.

Figure 1. Example showing use of the SOFControl module in a table driven loudness control

DSP Concepts Audio Weaver Module User’s Guide

 Page: 35 of 163

Figure 2. Lookup tables used in the table driven loudness control example. The left table converts the volume setting into a bass boost and

the right table does the same for the high frequency adjustment.

FILTERS WITH RAW COEFFS

Audio Weaver contains several filter types which operate on raw coefficients. These filters are for expert users

who understand DSP and know how to calculate the filter coefficients3. There are two types of filters – Finite

Impulse Response (FIR) and Infinite Impulse Response (IIR). Although Audio Weaver supports both types of filters,

the majority of the filters used in audio applications are IIR due to their computational efficiency.

The most basic IIR filter is the Biquad and it is implemented with the difference equation:

𝑎0𝑦𝑛=𝑏0𝑥𝑛+𝑏1𝑥𝑛−1+𝑏2𝑥𝑛−2−𝑎1𝑦𝑛−1−𝑎2𝑦𝑛−2

There are 5 coefficients that the user must set: b0, b1, b2, a1, and a2 (a0 is always assumed to be 1). Audio Weaver

does not check for stability and care must be used when computing the filter coefficients. There are several

variants of Biquad filters. The simples – Biquad – has a single stage and implements the different equation shown

above. BiquadCascade implements N stages of filtering with each channel using the same coefficients.

3 Matlab is often used by expert Audio Weaver users to compute coefficients and then update them in the block

diagram.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 36 of 163

BiquadNCascade implements N stages with each channel have its own set of coefficients. Finally, BiquadSmoothed

implements a single Biquad stage with coefficient smoothing on a block-by-block basis.

FIR

Time domain FIR filter

Specify filter length in module

properties

Biquad

Second order IIR filter.

5 filter coefficients are specified.

No smoothing.

BiquadCascade

Multiple Biquad filters in series.

The number of filters is specified in

module properties.

The same coefficients are used per

channel.

BiquadSmoothed

Second order IIR filter.

5 filter coefficients are specified.

Smoothed on a block-by-block basis

BiquadNCascade

Multiple Biquad filters in series.

The number of filters is specified in

module properties.

Different coefficients are used per

channel.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 37 of 163

FIR Sparse

Sparse FIR filter in which most values

are zero.

Less convolution cycles than normal

FIR

FIR Sparse Reader

Sparse FIR that connects to a delay

state writer.

Convolution is based on a pointer

rather than a separate FIR buffer.

FIR Sparse Reader

Fract16

Like FIR Sparse Reader except half the

memory.

Data is converted to fract16 for

computations and has a conversion for

the output if necessary.

HIGH PRECISION FILTERS

Audio Weaver contains a variety of Biquad filters for equalizing audio. Some filters require raw coefficients (such as

Biquad or BiquadCascade) while others contain built-in design equals (such as the SecondOrderFilter or

ButterworthFilter). These filters are implemented using a Direct Form 2 (DF2) structure:

z -1

z -1

x[n]
b0

b2

b1-a1

-a2

y[n]stateA

stateB

stateC

DSP Concepts Audio Weaver Module User’s Guide

 Page: 38 of 163

All Biquad filters including the DF2 have 5 coefficients. The advantage of the DF2 structure is that it requires only 2

state variables per filter as compared to 4 state variables for the DF1 structure.

These Biquad filters are implemented using floating-point arithmetic and are generally fine for most audio

applications. Floating-point arithmetic, though, is not a panacea for all numerical issues and these filters can still

suffer from quantization noise. The noise manifests itself as low-level noise correlated with the level of the input

signal. Quantization noise is exacerbated by high sampling rates (96 kHz and above) and by having poles very close

to the unit circle and this usually arises when making very low frequency EQ changes.

To solve these noise issues Audio Weaver includes a High Precision filter modules. These modules use floating-

point input and output data and are compatible with the other floating-point modules. Internally the high

precision filters use a proprietary DSP Concepts filter structure which significantly reduces quantization noise. The

filters are also efficient with a typical Biquad requiring 7 MAC operations vs the 5 needed in a DF2 Biquad.

The High Precision modules are designed to be drop in replacements for the non-high precision filters. That way,

numerical problems can be resolved by replacing the offending filter with its high precision version.

BiqudSmoothedHP Smoothly varying Biquad

ButterworthFilterHP
Butterworth lowpass, highpass, and

allpass filters

BiquadCascadeHP Cascade of N Biquad stages

GraphicEQBandHP Single band of a graphic equalizer

SOFControlHP
Controllable second order filter with

design equations

DSP Concepts Audio Weaver Module User’s Guide

 Page: 39 of 163

SOFCascadeHP
Cascade of second order filters each

with design equations

SecondOrderFilterHP
Single second order filter with design

equations

VolumeControlHP
Fletcher Munson volume control

with loudness compensation

The crossover filter module (XoverNway) is actually a subsystem consisting of multiple individual modules. The

module properties give the option to construct the crossover using standard Biquads or high precision Biquads:

The graphic equalizer gives the option of using standard precision or high precision filters.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 40 of 163

Here is an example of the benefits of the high precision filter. The system in the example has a peaking filter at 20

Hz with a gain of 6 dB and a Q of 2 and operates at a 48 kHz sample rate. The total harmonic distortion and noise

(THD+N) for different input frequencies is plotted below. First for standard Biquad filters

And now with a high precision filter, notice that the noise

floor is reduced significantly – by up to 90 dB at low

frequencies.

For the interested reader, this measurement is performed by passing sine waves of different frequencies through

the filter. Apply a notch filter at the output which removes the sine wave and then measure the RMS energy in the

residual. This residual energy equals the THD+N. The measurement is repeated for many different frequencies and

the plot reflects the measured THD+N at each input frequency.

COMMON FILTER MODULES

The following filters are found as modules with no folder in the Filters directory. This is because they are the most

common types of filters, which cover most general cases of filtering needs.

BUTTERWORTHFILTER

This module implements lowpass, highpass, or allpass filters using a Butterworth design. The filters have a gain of 0

dB in the passband and are then monotonically decreasing in the stopband. The filter order is specified under

module properties and ranges from 1st order (6dB/octave) to 10th order (60dB/octave). The filter order can only be

changed in Design mode. Specify the filter type on the inspector (lowpass, highpass, or allpass) as well as the cutoff

frequency, in Hz. Since these parameters are on the inspector, the filter type and cutoff frequency can be changed

at run-time. Unfortunately, the ButterworthFilter does not have coefficient smoothing and there may be

discontinuities when coefficients are updated.

10
1

10
2

10
3

-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

20

Frequency (Hz

T
H

D
+

N
 (

d
B

)

Frequency Response

THD+N

10
1

10
2

10
3

-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

20

Frequency (Hz

T
H

D
+

N
 (

d
B

)

Frequency Response

THD+N

DSP Concepts Audio Weaver Module User’s Guide

 Page: 41 of 163

Figure 3 - Butterworth lowpass filter frequency response as a function of filter order. The filter order goes from 1st order (least steep line) to

10th order (steepest line). The cutoff frequency is 100 Hz and the sample rate is 48 kHz

10
2

10
3

10
4

-100

-80

-60

-40

-20

0

20

Frequency (Hz)

G
a
in

 (
d
B

)

Butterworth Lowpass Filter

DSP Concepts Audio Weaver Module User’s Guide

 Page: 42 of 163

Figure 4 - Butterworth high filter frequency response as a function of filter order. The filter order goes from 1st order (least steep line) to 10th

order (steepest line). The cutoff frequency is 100 Hz and the sample rate is 48 kHz

SECONDORDERFILTERSMOOTHED

This module is the most frequently used filter among all of the Audio Weaver modules. It implements a 2nd order

Biquad filter and includes design equations for 20 different filter types. The filter type and high-level design

parameters (frequency, gain, and Q) can be changed at run-time using the inspector:

10
2

10
3

10
4

-100

-80

-60

-40

-20

0

20

Frequency (Hz)

G
a
in

 (
d
B

)

Butterworth Highpass Filter

DSP Concepts Audio Weaver Module User’s Guide

 Page: 43 of 163

Depending on the filter type, some parameters are not used. See the table below for the filter types available and

which control parameters are applicable.

Pass Through

filterType = 0

Applicable parameters: none.

Biquad coefficients are set to b0=1, b1=0,

b2=0, a1=0, and a2=0. The filter runs and

consumes processing but the output

equals the input.

Gain

filterType = 1

Applicable parameters: gain

A simple gain with coefficients set to

b0=undb20(gain), b1=0, b2=0, a1=0, and

a2=0

10
1

10
2

10
3

10
4

-15

-10

-5

0

5

10

15

R
e
s
p
o
n
s
e
 (

d
B

)

Frequency (Hz)

Pass through

10
1

10
2

10
3

10
4

-15

-10

-5

0

5

10

15

R
e
s
p
o
n
s
e
 (

d
B

)

Frequency (Hz)

Gain

DSP Concepts Audio Weaver Module User’s Guide

 Page: 44 of 163

1st order Butterworth lowpass filter

filterType = 2

Applicable parameters: freq

2nd order Butterworth lowpass

filterType = 3

Applicable parameters: freq

10
1

10
2

10
3

10
4

-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

15

R
e
s
p
o
n
s
e
 (

d
B

)
Frequency (Hz)

1st Order Butterworth LPF

10
1

10
2

10
3

10
4

-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

15

R
e
s
p
o
n
s
e
 (

d
B

)

Frequency (Hz)

2nd Order Butterworth LPF

DSP Concepts Audio Weaver Module User’s Guide

 Page: 45 of 163

1st order Butterworth highpass

filterType = 4

Applicable parameters: freq

2nd order Butterworth highpass

filterType = 5

Applicable parameters: freq

10
1

10
2

10
3

10
4

-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

15

R
e
s
p
o
n
s
e
 (

d
B

)
Frequency (Hz)

1st Order Butterworth HPF

10
1

10
2

10
3

10
4

-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

15

R
e
s
p
o
n
s
e
 (

d
B

)

Frequency (Hz)

2nd Order Butterworth HPF

DSP Concepts Audio Weaver Module User’s Guide

 Page: 46 of 163

1st order allpass

filterType = 6

Applicable parameters: freq

2nd order allpass

filterType = 7

Applicable parameters: freq and Q

DSP Concepts Audio Weaver Module User’s Guide

 Page: 47 of 163

2nd order low shelf

filterType = 8

Applicable parameters: freq and gain

 Use as a low frequency tone control

2nd order low shelf with Q

filterType = 9

Applicable parameters: freq, gain, and Q

10
1

10
2

10
3

10
4

-15

-10

-5

0

5

10

15

R
e
s
p
o
n
s
e
 (

d
B

)
Frequency (Hz)

2nd order low shelf

10
1

10
2

10
3

10
4

-15

-10

-5

0

5

10

15

R
e
s
p
o
n
s
e
 (

d
B

)

Frequency (Hz)

2nd order low shelf with Q

DSP Concepts Audio Weaver Module User’s Guide

 Page: 48 of 163

2nd order high shelf

filterType = 10

Applicable parameters: freq and gain

Use as a high frequency tone control

2nd order high shelf with Q

filterType = 11

Applicable parameters: freq, gain, and Q

10
1

10
2

10
3

10
4

-15

-10

-5

0

5

10

15

R
e
s
p
o
n
s
e
 (

d
B

)
Frequency (Hz)

2nd order high shelf

10
1

10
2

10
3

10
4

-15

-10

-5

0

5

10

15

R
e
s
p
o
n
s
e
 (

d
B

)

Frequency (Hz)

2nd order high shelf with Q

DSP Concepts Audio Weaver Module User’s Guide

 Page: 49 of 163

2nd order peaking / parametric

filterType = 12

Applicable parameters: freq, gain, and Q

Commonly used for generic equalization

since it has controllable frequency, gain,

and Q settings.

2nd order notch

filterType = 13

Applicable parameters: freq and Q

10
1

10
2

10
3

10
4

-15

-10

-5

0

5

10

15

R
e
s
p
o
n
s
e
 (

d
B

)

Frequency (Hz)

Peaking / Parametric filter

10
1

10
2

10
3

10
4

-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

R
e
s
p
o
n
s
e
 (

d
B

)

Frequency (Hz)

Notch filter

DSP Concepts Audio Weaver Module User’s Guide

 Page: 50 of 163

2nd order bandpass filter

filterType = 14

Applicable parameters: freq and Q

1st order Bessel lowpass filter

filterType = 15

Applicable parameters: freq

10
1

10
2

10
3

10
4

-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

R
e
s
p
o
n
s
e
 (

d
B

)
Frequency (Hz)

Bandpass filter

10
1

10
2

10
3

10
4

-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

15

R
e
s
p
o
n
s
e
 (

d
B

)

Frequency (Hz)

1st Order Bessel LPF

DSP Concepts Audio Weaver Module User’s Guide

 Page: 51 of 163

1st order Bessel highpass filter

filterType = 16

Applicable parameters: freq

1st order asymmetrical low shelf

filterType = 17

Applicable parameters: freq and gain

10
1

10
2

10
3

10
4

-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

15

R
e
s
p
o
n
s
e
 (

d
B

)
Frequency (Hz)

1st Order Bessel HPF

10
1

10
2

10
3

10
4

-15

-10

-5

0

5

10

15

R
e
s
p
o
n
s
e
 (

d
B

)

Frequency (Hz)

1st order asym low shelf

DSP Concepts Audio Weaver Module User’s Guide

 Page: 52 of 163

1st order asymmetrical high shelf

filterType = 18

Applicable parameters: freq and gain

1st order symmetrical low shelf

filterType = 19

Applicable parameters: freq and gain

10
1

10
2

10
3

10
4

-15

-10

-5

0

5

10

15

R
e
s
p
o
n
s
e
 (

d
B

)
Frequency (Hz)

1st order asym high shelf

10
1

10
2

10
3

10
4

-15

-10

-5

0

5

10

15

R
e
s
p
o
n
s
e
 (

d
B

)

Frequency (Hz)

1st order symmetrical low shelf

DSP Concepts Audio Weaver Module User’s Guide

 Page: 53 of 163

1st order symmetrical high shelf

filterType = 20

Applicable parameters: freq and gain

The Butterworth filter from SecondOrderFilterSmoothed is the same as the ButterworthFilter

module of equal filter order. However, SecondOrderFilterSmoothed only implements 1st and 2nd

order Butterworth filters. Higher order Butterworth filters can only be implemented by the

ButterworthFilter module.

The SecondOrderFilterSmoothed implementation of the first order Butterworth filter is more

computationally efficient than the ButterworthFilter module.

Low/high shelf filter and low/high shelf filter Q are identical if Q is set to 0.707 (√0.5).

SECOND ORDER FILTER SMOOTHED CASCADE

This module contains several

SecondOrderFilterSmoothed modules in

series. This can be used to implement a

more complicated EQ with only a single

module. Under module properties,

specify the number of stages of filtering.

If the number of stages is set to 1, then

this module is equivalent to the

SecondOrderFilterSmoothed module.

When there are multiple stages, the

inspector expands as shown right:

10
1

10
2

10
3

10
4

-15

-10

-5

0

5

10

15

R
e
s
p
o
n
s
e
 (

d
B

)
Frequency (Hz)

1st order symmetrical high shelf

DSP Concepts Audio Weaver Module User’s Guide

 Page: 54 of 163

TABLE OF FILTER MODULES

Order Usage Tip

Adaptive

LMS (FIR length) signal to be learned' goes into reference pin.

Calculated Coeffs

Allpass Pair Variable set Rs for better band separation

Audio Weighting Cascaded 2nd change weighting with the dropdown variable.

Crossover Filter Variable up to 10th frequency will split into upper and lower bands

Emphasis Filter 1st used typically by weighting formulas

Graphic EQ Variable up to 12th automatic frequency setting with module variables

Graphic EQ Band Variable up to 12th up to 12th order, useful.

Hilbert 12th +-90 degrees added to phase

Pink Filter 8th turns white noise pink. Turns pink noise red.

Three Band Tone Control 2nd Cheap solution for handling "full spectrum"

Tilt Filter Variable 2nd Makes noise more 'blue' or 'pink' based on slope.

Controllable

First Order Filter Control 1st immediate control

LPF1 Control 1st immediate control

Second Order Filter Control 1st/2nd delayed control

High Precision

Biquad Cascade (Precise) Cascaded 2nd High Precision, use for handling low freq, high SR, or sensitive ears.

Biquad Smoothed (Precise) 2nd (same)

Butterworth Filter (Precise) Variable up to 10th (same)

Graphic EQ Band (Precise) Variable up to 12th (same)

Second Order Filter (Precise) 1st/2nd (same)

SOFCascade (Precise) Cascaded 1st/2nd (same)

SOFControl (Precise) 1st/2nd (same)

Raw Coeffs

Biquad 2nd clicks/pops with changes, this is for constant filter.

Biquad Cascade Cascaded 2nd same as above, higher order.

Biquad N Cascade 2nd cascade with different filter responses.

Biquad Smoothed 2nd smoothly varying, use for end-user control.

FIR (FIR length) convolution FIR

FIR Sparse (FIR length) FIR with mostly zeros, computationally efficient.

FIR Sparse Reader (FIR length) Hook to delay state writer, unique iterator feeds input for convolution

FIR Sparse Reader Fract16 (FIR length) twice the memory efficiency as above.

Floating Modules

Butterworth Filter Variable up to 10th Only odd allpasses are supported. Use SOF for even allpasses.

Second Order Filter Smoothed 1st/2nd 20 different filter types, varying orders.

Second Order Filter Smoothed Cascade Cascaded 1st/2nd same as above, but cascaded.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 55 of 163

FREQUENCY DOMAIN

FREQUENCY DOMAIN MODULES

Modules for processing signals in the frequency domain are found in the Frequency Domain folder. Frequency

domain processing yields novels solutions to audio processing problems and may also lead to more efficient

implementations. This section describes the main concepts behind frequency domain processing, then Filterbank

Processing describes more sophisticated processing using weighted-overlap short-term Fourier transform

filterbanks.

COMPLEX DATA SUPPORT

Audio Weaver natively supports complex data within wire buffers. The data is stored in an interleaved fashion:

real[0], imag[0], real[1], imag[1], real[2], etc

For multichannel data the interleaving of real and complex data happens at the lowest level. For example,

interleaved stereo data is stored as:

L_real[0], L_imag[0], R_real[0], R_imag[0], L_real[1], L_imag[1], R_real[1], R_imag[1], etc.

Two modules are provided to convert between real and complex data

RealImagToComplex

Converts two real signals into

complex data using one as the real

part and the other as the imaginary

part

ComplexToRealImag

Converts a complex signal into

separate real and imaginary

components

DSP Concepts Audio Weaver Module User’s Guide

 Page: 56 of 163

The system below essentially does nothing except convert two mono signals into complex and then back again. If

view wire info is enabled, (“ViewData type”) it will mark complex wires with a “C”.

TRANSFORM MODULES

Audio Weaver provides 3 different transform modules for converting between the time and frequency domains.

Cfft
Complex FFT. Supports both forward

and inverse transforms

Fft

Forward FFT of real data

Ifft

Inverse FFT yielding real data

DSP Concepts Audio Weaver Module User’s Guide

 Page: 57 of 163

The complex FFT

takes a complex N-

point input and

generates a

complex N-point

output. The module

is configured on the

module properties

as either a forward

or inverse

transform.

The Fft and Ifft modules are designed to operate on real signals. The Fft modules takes an N-point real input and

generates an N/2+1 point complex output. The output signal contains frequency samples from DC (𝜔 = 0) all the

way up to and including the Nyquist frequency (𝜔 = 𝜋). A property of the real FFT is that the samples at DC and

Nyquist contain real data only and the imaginary components are guaranteed to be zero. These samples are still

stored as complex values but the imaginary component is zero. The output of the real FFT will therefore consist of

the samples:

X[0] real

X[1] complex

X[2] complex

…

X[N/2-1] complex

X[N/2] real

The Ifft takes N/2+1 complex samples and returns a real N-point sequence. The Ifft ignores the imaginary

component of the DC and Nyquist samples.

WINDOWING

Before an FFT is computed the signal is typically windowed to prevent edge effects from influencing the results.

There are 3 modules which perform windowing.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 58 of 163

Window Simple window

WindowOverlap

Window with overlapping

WindowAlias

Windowing followed by time aliasing

The windowing modules are for advanced users who use Matlab to compute

window coefficients.

The Window module can compute a large number of different window functions.

Under module properties, specify the length of the window to apply. Then on the

inspector, specify the starting and ending indexes of the window as well as the

window type and an optional amplitude.

Allowing the ability to change the starting and ending indexes of the window is

more flexibility than is usually needed.

The WindowOverlap module has an internal FIFO that buffers up data into

overlapping blocks. For example, a 64-sample input block size with a 50% overlap

turns into 128 sample blocks, to be windowed. Essentially, the WindowOverlap

module contains a Rebuffer module combined with a Window module. The module

has an internal array of window coefficients. This array is initialized to a Hamming

window (raised cosine) at instantiation time. To change the window coefficients

use the Matlab scripts.

The WindowAlias module applies a window followed by time aliasing the sequence to a shorter length. This

module is used in the analysis back of short-term Fourier transform based filterbanks.

OverlapAdd
Reduces block size by overlapping

blocks

DSP Concepts Audio Weaver Module User’s Guide

 Page: 59 of 163

The OverlapAdd module performs the opposite of the Rebuffer module. The module has a large input block size

and a smaller output block size. The module contains an internal buffer equal to the input block size. The module

takes the input data, adds it to the internal buffer, and then shifts out one block of output data. The data in the

internal buffer is also left shifted and the leading samples are filled with zeros. The OverlapAdd module finds use in

fast convolution algorithms.

RepWinOverlap
Replicates data, applies a window,

and then performs overlap add

The RepWinOverlap module is for advanced users building synthesis filterbanks. The module replicates a signal N

times, applies a window, and then performs overlap add.

ZeroPad Adds zeros at the end of a buffer

The ZeroPad module inserts zeros at the end of a signal. Specify the length of the output buffer under module

properties. If the output is longer than the input then the signal is zero padded. If the output is shorter than the

input then the signal is truncated.

COMPLEX MATH

The frequency domain modules have a large number of modules which operate on complex data. The modules

here are listed without detailed explanations because the underlying functions are basic and easily understood.

ComplexAngle Computes atan2 of complex data

ComplexConjugate
Conjugates data by negating the

imaginary component

DSP Concepts Audio Weaver Module User’s Guide

 Page: 60 of 163

ComplexMagnitude √𝑅 ∗ 𝑅 + 𝐼 ∗ 𝐼

ComplexMagSquared 𝑅 ∗ 𝑅 + 𝐼 ∗ 𝐼

ComplexModulate Multiplies by 𝑒𝑗𝜔𝑘

ComplexMultiplier
Complex x Complex, or

Real x Complex

ComplexToPolar
Converts to Polar (angle and

magnitude)

PolarToComplex Converts from Polar to Real/Imag

The modules listed above operate on complex data only. A few of the other Audio Weaver modules found outside

the Frequency Domain folder are also able to operate on complex data type:

BlockConcatenate Combines blocks of complex data

BlockDelay Delays by multiples of the block size

BlockExtract Extracts a portion of the complex data

BlockFlip Frequency flips data

Deinterleave Pulls apart multichannel complex signals into individual mono complex signals

DSP Concepts Audio Weaver Module User’s Guide

 Page: 61 of 163

Demultiplexor Outputs complex data to one output pin; zeros the rest

Interleave Combines multiple mono complex signals into a single multichannel complex

signal

Multiplexor Selects one of N complex signals

ShiftSamples Left or right shifts complex signals

Adder Adds two complex signals

ClipAsym Clips the real and imaginary components

Invert Multiplies by + or -1. Set smoothingTime = 0.

Mixer Mixers together complex signals

MixerDense - Mixers together complex signals

MuteSmoothed Multiplies by +1 or 0. Set smoothingTime = 0.

ScaleOffset Scale both the real and imaginary components and adds an offset

ScalerDB dB gain without smoothing

Scaler Linear gain without smoothing

Subtract Subtracts two complex signals

SumDiff Adds and subtracts complex signals

WhiteNoise Generates uncorrelated noise in both real and imaginary components

ScalerDBControl dB gain with gain value taken from a control pin. Set smoothingTime = 0.

ScalerControl Linear gain with the gain value taken from a control pin. Set smoothingTime =

0.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 62 of 163

 FILTERBANK PROCESSING

INTRODUCTION

This Section describes the filterbank blocks. The blocks are based on a weighted overlap-add (WOLA) design and

are applicable to a wide range of audio processing tasks. The document first describes how the blocks work from

an end user’s point of view. It then describes the theory behind the filterbanks and how they lead to efficiency

during runtime.

USING WOLA AND SUB-BAND BLOCKS

The WOLA filterbank blocks are part of the DSPC Concepts IP Folder. The Frequency Domain contains the key set

of Audio Weaver modules which are used for performing frequency domain computations. There are blocks for

FFTs, windowing, complex operations, etc. Frequency domain operations often involve filterbanks, and Audio

Weaver also includes modules for implementing entire weighted overlap-add filterbanks. There are separate

modules for the forward filterbank (the analysis bank) and the inverse filterbank (the synthesis bank).

DSP Concepts Audio Weaver Module User’s Guide

 Page: 63 of 163

The blocks are called “WOLA Analysis” and

“WOLA Synthesis”. When dragged out, they

will appear as follows in the layout:

The input to the WOLA Analysis bank is real

time domain data and the output is complex

frequency domain data. Similarly, the input to

the WOLA Synthesis bank is complex

frequency domain data and the output is real

time domain data. When configuring the

filterbanks using Module Name and

Arguments, the FFT size (K) and the stopband

attenuation between subbands is specified. This holds for both the analysis and the synthesis banks. Under module

name and arguments, this would show:

DSP Concepts Audio Weaver Module User’s Guide

 Page: 64 of 163

The FFT specifies the number of frequency domain “bins” and the

input (and output) block size is always ½ of the FFT size. For example, if

using a 32 sample block size will only work with an FFT size K = 64.

Manually set this on both the analysis and the synthesis filterbanks.

This will error out if improperly specified:

The attenuation relates to the separation between outputs of the

filterbank, in dB, and will be described in more detail later in the guide.

A “safe” value to use is somewhere in the range from 40 to 80 dB.

When combining analysis and synthesis filterbanks, ensure that the

same value of attenuation is used throughout.

Assuming a block size of 32, set the FFT size K = 64. Making

connections between blocks and then showing wire sizes:

Note that the output of the filterbank contains 33 complex samples rather than 64. This is because the filterbank

modules use real FFTs and as a result discard the redundant conjugate symmetric data. Only K/2+1 bins are kept,

which in this case equals 33. The bins have the following properties:

Bin k=0. Real data.

Bin k=1. Complex data.

Bin k=2. Complex data.

…

Bin k=31. Complex data

Bin k=32. Real data

The first and last bins have real data; this is a property of the FFT and results from the fact that the input data is

real. Audio Weaver stores the output of the FFT as 33 complex values with the imaginary parts of bins k=0 and

k=32 set to zero.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 65 of 163

The filterbanks accept any number of channels of input data, but it is not a typical scenario in Audio Weaver4.

The text below the filterbank modules also shows the latency through the filterbanks, in samples. The latency is

the combined latency through the analysis and synthesis filterbanks given the current values of K and attenuation.

Increasing K or increasing the attenuation increases the latency through the filterbanks. use the displayed latency

to time align other signals in the system. For example, to check the reconstruction properties of the filterbanks,

compensate using a sample delay module:

The output of the WOLA synthesis bank equals the input of the analysis bank but delayed by 352 samples. In the example above, this latency

is compensated with a delay, so the output of the subtract module is essentially zero.

This example shows the meter module with a residual difference at around -80 dB. The filterbanks are not perfect

reconstruction but introduce a small amount of aliasing noise. The level of aliasing noise is directly related to the

attenuation setting of the filterbanks.

4 Note that although the analysis and synthesis filterbanks accept any number of channels, most modules in the

Frequency Domain folder only operate on mono signals. It is recommended to design systems with mono

frequency domain data for greatest flexibility.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 66 of 163

The frequency domain outputs of the analysis filterbank represent the outputs of a series of bandpass filters. There

are K filters and the spacing between bins is
2𝜋

𝐾
 radians, or if the sample rate of the system is SR, then the spacing

between bins is
𝑆𝑅

𝐾
 Hz. For example, if the sample rate of the system is 48 kHz and K=64, then the spacing between

bins is 750 Hz. The first bin (with real data) is centered at 0 Hz. The next bin is centered at 750 Hz, and so on. The

last bin (with real data) is centered at 24 kHz.

The filterbanks also contain built in decimation. The outputs of the analysis bank represent the decimated outputs

of bandpass filters. The decimation factor equals the block size, that is, K/2. Continuing the example from above,

the sample rate of the system is 48 kHz and the block size is 32 samples. Thus, the sample rate of the frequency

domain subbands is 1500 Hz. see this by showing the sample rate on the wires.

THEORY

This section describes more of the mathematical theory behind the filterbanks. The design of the filterbanks was

based primarily on chapter 7 of the book Multirate Digital Signal Processing by Crochiere and Rabiner. This is an

excellent and very readable introduction to the subject of filterbanks. Our description follows the derivation found

in this book.A classical filterbank uses a time domain window function followed by an FFT as shown below:

K-point Window

K-Point FFT

Block of K input samples

Block of K input samples

Block of K frequency domain samples

Block of K frequency domain samples

Block of K frequency domain samples

Block of K input samples

Input samples

Time

The length of the FFT equals the length of the window function. In many cases, the window function is a raised

cosine, or Hanning window:

DSP Concepts Audio Weaver Module User’s Guide

 Page: 67 of 163

The input blocks of the filterbank are overlapped in time. There are many ways to describe the amount of

overlapping. The terminology “50% overlap” indicates that from FFT to FFT, K/2 new input samples are made. If

there is “75% overlap” then there are K/4 new samples for each FFT computed. In this discussion, the phrase

“block size” is used to describe how many new samples arrive each time. This approach is also referred to as a

short-term Fourier transform (STFT).

There are two different ways of looking at the output of the STFT analysis bank. On is to segment the input signal

into blocks which are windowed and then FFT’ed. The output of the analysis bank thus corresponds to frequency

spectra. On the other hand, a careful study of the analysis bank shows that it is in effect implementing a set of

parallel bandpass filters as shown below.

 nh

  Knjenh /2

  Knjenh /4

    Knkjenh /12 

M

M

M

M

Figure 5. Analysis filterbank implementation as a parallel set of bandpass filters and decimators.

The input signal is filtered and then decimated by the block size M. The filters are all related by the mathematical

expression

ℎ𝑘𝑛=ℎ0𝑛𝑒𝑗2𝜋𝑘𝑛/𝐾

DSP Concepts Audio Weaver Module User’s Guide

 Page: 68 of 163

where ℎ[𝑛] is the prototype lowpass filter and all other filters are related to the prototype filter by complex

modulation. In the frequency domain, the filters are shifted versions of the prototype filter

𝐻𝑘𝜔=𝐻0𝜔−2𝜋𝑘/𝐾

For example, if a Hanning window is used as the prototype filter,

ℎ𝑛=121−cos2𝜋𝑛𝐾−1

then the frequency response 𝐻0(𝜔) for K = 32 is

Figure 6. Frequency response of a 32-point Hanning window. The graph shows normalized frequencies in the range 0 to 1.0 which

corresponds to 0 to 𝝅 radians/sample.

Subsequent bins are spaced by 2𝜋/32 (or 1/16 when viewed as normalized frequencies) and the first 4 bins are

shown below:

DSP Concepts Audio Weaver Module User’s Guide

 Page: 69 of 163

Note that the prototype filter is quite wide in the frequency domain and there is significant overlap between

neighboring bins. Not only does bin k overlap with bin k+1, but also with k+2 and k+3. If a decimation factor of 16 is

picked, then aliasing will start at normalized frequency of 1/16 as shown below. The prototype filter has only

attenuated the signal by 0.5 and severe aliasing will occur.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 70 of 163

Figure 7. Frequency response of a 32-point Hanning window overlayed with a rectangle indicating where aliasing would occur if the filter

output is decimated by a factor of 16.

If the decimation factor is changed to 8, then aliasing begins at a normalized frequency of 1/8 SR and the filter has

attenuated the signal. However, with a decimation factor of 8 the 32 sample Hanning window only advances 8

samples each time and this corresponds to an overlap factor of 75%.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 71 of 163

Figure 8. This time the rectangle indicates where aliasing occurs for a decimation factor of 4.

Is there a way to achieve high decimation while at the same time avoiding aliasing? This brings up the weighted

overlap-add filterbank (WOLA). The block based derivation from Crochiere and Rabiner avoids aliasing while

supplying high decimation. The analysis filterbank is implemented as shown on the next page.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 72 of 163

KxN-point Window

K-Point

FFT

Block of KxN input samples

Freq

Data

Input samples

Time

+

Block of KxN input samples

+

+

=
K-point

signal

Windowed Data

Block of KxN input samples

Time

alias to

length K

The main difference is that the prototype filter is N times longer and that after multiplying the input signal, the

output is time aliased to the FFT length. Time aliasing is a standard property of the FFT. Suppose an input signal is

given: 𝑟[𝑛] of length 𝐾𝑁. Time alias this to a shorter signal 𝑥[𝑛] of length 𝐾

𝑥𝑛=𝑝=0𝑁−1𝑟[𝑛+𝑝𝐾]

The FFT 𝑋[𝑘] of 𝑥[𝑛] is related to the FFT 𝑅[𝑘] of 𝑟[𝑛] by subsampling

𝑋[𝑘] = 𝑅[𝑘𝑁]

That is, 𝑋[𝑘] contains samples of 𝑅[𝑘] spaced by 𝑁 bins.

The advantage of using a longer prototype filter is that it allows us to get better frequency separation between

bands. Consider the designs shown below with N=1, N=2, and N=4. The filters get progressively sharper in

frequency and for N=4, the passband of the filter falls within the rectangle indicating the aliasing region for a

decimation factor of 16. Thus a high decimation factor is achieved while avoiding high amounts of aliasing.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 73 of 163

Now let’s plot the frequency response of the first 4 filters in the filterbank assuming an FFT size of 32 samples, a

window length of 128 samples, and a decimation factor of 16.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 74 of 163

Figure 9. First 3 subband filters for the WOLA filterbank with K=32, N=4, and a decimation factor of 16.

When N is increased to a very high number to achieve a decimation factor of 32, the result is a critically sampled

filterbank with no net increase in data. This limit can be approaced, but never achieved in practice. With realizable

filters, a filter will always overlap its immediate neighbors. In Audio Weaver, a decimation factor of K/2 is used and

the filterbanks are oversampled by a factor of 2. There is a net doubling of the data rate, but this is important

because it decouples the subbands and allows them to be modified without introducing further aliasing distortion.

Recent theory of filterbanks has been focused on critically sampled filterbanks. These filterbanks find use in audio

compression and since the goal in compression is to reduce the overall data rate, it is important not to oversample

and introduce more data in the subband representation. However, the operations performed on subbands in audio

codecs are very gentle compared to what is possible with our WOLA filterbanks. In audio compression, the goal is

for the output to equal the input. In Audio Weaver processing systems, the focus is to be able to make gross

changes to the subbands without introducing objectionable aliasing artifacts. This requires a fundamentally

different approach. Furthermore, if the algo calls for a frame overlap add and overlap save convolution in a

filterbank framework, oversampling is needed. In general, in order to perform subband modifications of audio

signals without introducing objectionable aliasing distortion, some amount of oversampling is required.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 75 of 163

ALIASING PERFORMANCE OF THE WOLA FILTERBANKS

As noted above, the filters in the filterbanks are not ideal and introduce some amount of aliasing. The amount of

aliasing depends upon the stopband attenuation used in the design of the filters. This section provides details on

the amplitude of this aliasing noise. To test this, use the system shown below:

Analysis and synthesis filterbanks are placed back-to-back. The input is white noise, the output is subtraction of the

inputs while compensating for the delay through the filterbanks. Comparing the energy at the input to the energy

of the residual noise provides an indication of the level of the aliasing components. The following table shows the

aliasing level and latency as a factor of the stopband attenuation of the prototype low pass filter. In the test, an

FFT size of 256 samples was used with a resulting blockSize of 128 samples.

Stopband

Attenuation

(dB)

Measured

Aliasing

Noise (dB)

Latency

(samples)

Latency

(blocks)

30 -28 384 3

40 -39 640 5

50 -50 896 7

60 -61 1152 9

70 -61 1152 9

80 -78 1408 11

90 -87 1664 13

Keep in mind that the aliasing components are linearly related to the input signals. That is, reducing the level of the

input signal by 20 dB results in the level of the aliasing components dropping by 20 dB. Thus, the aliasing level is

more similar to a signal to noise ratio (SNR) rather than total harmonic distortion.

SUBBAND SIGNAL MANIPULATION

DSP Concepts Audio Weaver Module User’s Guide

 Page: 76 of 163

Part of the beauty of these filterbanks is that it is possible to manipulate the signals in the subband domain. For

example, if scaling the subband signals as shown below, the result will be an equalizer with linearly spaced

frequency bins.

Another nice property of the WOLA filterbanks is that they have built in smoothing. That is, making an

instantaneous gain change to one of the subband signals then the net effect at the output will be smooth. This is

because the synthesis bank has built in low pass filters in each subband and these smooth out discontinuities.

The FIR filter example can be taken further. The example above had only a single gain within each subband. What

if the goal is to have more frequency resolution? Place FIR filters into each subband. A longer FIR filter would

provide more resolution within that particular frequency band. Consider the following example. A filterbank has an

FFT size of 64 samples and is operating with a decimation factor of 32. If the input is 48 kHz then each subband has

a sample rate of 1.5 kHz. If an FIR filter of length 500 samples is placed in the DC subband (bin k=0), then this yields

an effective frequency resolution of 3 Hz within this band. The amount of computation needed to implement this

filter is approximately 1500 x 500 = 0.75 MIPs. High resolution is needed in audio applications at low frequencies.

For higher frequencies, reduce the lengths of the FIR filters and achieve something close to “log frequency

resolution”. By proper design of the subband filters, designing phase response becomes simple.

Any of the Frequency Domain modules which operate on complex data operate in the subband domain. Audio

Weaver also provides a special set of “Subband Processing” modules that start with the “Sb” prefix. These modules

replicate some of the standard time domain modules but the operations occur separately in each subband.

SbAttackRelease
Attack and release envelope follower

(real data only)

DSP Concepts Audio Weaver Module User’s Guide

 Page: 77 of 163

SbDerivative Derivative (real data only)

SbComplexFIR Complex FIR filter

SbNLMS Normalized LMS adaptive filter

SbSmooth
Performs smoothing across

subbands (real data only)

SbRMS
RMS with settable time constant

(real data only)

SbSOF Second order filter (real data only)

SbSplitter

Subdivides the spectrum into

overlapping regions. Similar to a

crossover

SYNTHESIS FILTERBANK

The synthesis filterbank takes the subband signals and reconstructs a time domain output. Error! Reference source

not found.Remember that the analysis filterbank can be considered to be a parallel set of bandpass filters and

decimators. The synthesis filterbank uses a the inverse of this with upsamplers, filters, and adders. The upsamplers

DSP Concepts Audio Weaver Module User’s Guide

 Page: 78 of 163

take the decimated subband signals and return them to the original sampling rate by inserting M-1 zeros between

each sample value. In the frequency domain, upsampling creates copies of the input spectrum at multiples of

2𝜋/𝑀 and the filters remove the high frequency copies.

M  nf

  Knjenf /2

  Knjenf /4

    Knkjenf /12 

M

M

M

Figure 10. Synthesis filterbank implementation using upsamplers and bandpass filters.

For efficiency, the synthesis filterbank is implemented using an inverse FFT and periodic replication. As in the

analysis filterbank, the window function 𝑓[𝑛] corresponds to the impulse response of the prototype lowpass filter

used in subband k=0.

Freq

Data

K-Point

IFFT

K-point K-point K-point K-point

KxN-point synthesis window

Block of KxN samples

Replicate M times

K-pointUse Next Time

K zeros Previous state

K output samples

Figure 11. Synthesis bank implemented using an inverse FFT followed by windowing and overlapping.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 79 of 163

GAINS

Scaler modules multiply the input signal by a constant value. think of scalers as gain controls or faders.

There are many different types of scalers and they have the following characteristics:

1. Smoothed or unsmoothed

2. Linear or dB gains

3. Single gain applied to all channels or individual gains per channel

All scalers support multichannel data and arbitrary block sizes. The scaler modules with a single gain

support multiple input and output pins and the number of pins is specified as a constructor argument.

If the scaler has individual gains per channel, then the initial number of channels can be specified as a

constructor argument. This makes it easy to enter initial gains before completing the entire block diagram.

Thereafter the number of gains is updated by pin propagation. For these modules, the gain values are

specified using an array. The module to use for multiple gain channels is the General Purpose Vector

Scaler. It supports smoothing/non, linear/dB, and multichannel gain control.

In unsmoothed scalers the gain change takes place immediately and may result in an audible “pop” due to

the discontinuity. To avoid this, use a scaler with built-in smoothing instead. The following list explains the

differences between the deprecated scaler modules, which each had its own function. THESE MODULES

DSP Concepts Audio Weaver Module User’s Guide

 Page: 80 of 163

ARE OUT OF DATE, USE GENERAL PURPOSE SCALER. This list is here to keep documentation for the

deprecated modules, whose documentation is similar to the fract32 scaler modules.

Scaler

Single linear gain

Unsmoothed

Multiple I/O pins

ScalerSmoothed

Single linear gain

Smoothed

Multiple I/O pins

ScalerDB

Single dB gain

Unsmoothed

Multiple I/O pins

ScalerDBSmoothed

Single dB gain

Smoothed

Multiple I/O pins

ScalerN

Per channel linear gains

Unsmoothed

ScalerNSmoothed

Per channel linear gains

Smoothed

ScalerNDBSmoothed

Per channel dB gains

Smoothed

DSP Concepts Audio Weaver Module User’s Guide

 Page: 81 of 163

For the above modules, the gain to apply is specified by an inspector variable. The module library also has two

controllable scalers. For these modules, the gain to apply is taken from the first input pin. There are linear and dB

variants and both have built-in smoothing.

ScalerControl

Controllable scaler with linear gain

ScalerDBControl

Controllable scaler with dB gain

Invert
Smoothing scales between +1 and -1

and provides a phase inversion.

ScaleOffset

Multiplies the signal by a fixed scale

factor and adds an offset.

These modules are frequently used to invert or add an offset to a signal by setting the scale factor equal to 1.0.

This is easier than using separate DCSource and Adder modules.

MUTES

Several other modules exist which do smoothing scaling of signals between fixed values. The MuteSmoothed

module scales between 0 and 1 and the Invert module scales between +1 and -1. There is also a MuteNSmoothed

module which is designed for multichannel signals and allows the individual mute control for each channel.

MuteSmoothed
Smoothly mutes and unmutes a

signal.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 82 of 163

MuteNSmoothed

Multichannel mute with separate

controls for each channel. Similar to

ScalerNSmoothed.

The SoloMute module allows muting of all channels except one (like soloing on a soundboard). The SoloMute

module can have multiple input pin, where each input can have multiple channels. Or, if it has a single input pin,

the soloing functionality is applied to individual channels.

SoloMute

Similar to MuteN except that it

includes the ability to solo or listen to

only 1 channel.

CROSSFADER

The Crossfader module takes in two sources and smoothly varies between the two input sources. It also has energy

levelling during the crossfade based on either a Linear scale (amplitude) or the energy of the signal (rms). This

module has a control pin that varies between 0 and 1, correlating to the next two input pins. It is limited to two

channels.

GENERAL PURPOSE SCALERS

As mentioned earlier, the general purpose scaler supports smoothing, dB and linear gain values, optional input pin,

and even pin counts. If a multichannel-multivalued gain is needed, the General Purpose Vector Scaler supports up

to 256 simultaneous channels.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 83 of 163

TABLE OF MUTE MODULES

Module Name Input type supported Smoothing Per Channel Control

Mute N Smoothed Floating Point Yes Yes

Mute Smoothed Floating Point Yes No

Mute Unmute Floating Point Yes No

Solo Mute Floating Point Yes Yes

Synchronous Mute Floating Point Yes No

TABLE OF GAIN MODULES

Module Name Input type supported Smoothing dB or Linear Units Gain input Pin Per Channel Gain

Cross Fader Floating Point Yes Linear and Energy No No

General Purpose Scaler Floating Point Yes Both Optional No

General Purpose Vector Scaler Floating Point Yes Both No Yes

Invert Floating Point Yes Linear No No

Scale Offset Floating Point No Linear No No

Scale Offset Int32 Int32 No Linear No No

Scaler Control Floating Point Yes Linear Yes No

Volume Control Floating Point Yes dB No No

Volume Control (Precise) Floating Point Yes dB No No

DSP Concepts Audio Weaver Module User’s Guide

 Page: 84 of 163

LOGIC

CONTROL SIGNALS AND BOOLEAN LOGIC

Control signals are defined as having a block size of one. This useful for reducing the computational load when only

a single value is needed. Wires holding control signals are shown as dashed lines ().

To illustrate the use of control signals we’ll build up a Fletcher-Munson equal-loudness contour. This guide is not

intended to go into depth on topics of audio processing, but in simplest terms, this system adapts frequency as the

level of audio drops. The human ear perceives both the low- and high-range frequencies dropping off more quickly

than the mid-range frequencies. A common method for dealing with this in audio processing is to boost the bass

and treble frequencies as the volume drops to create what is called an “equal-loudness contour,” or a “Fletcher-

Munson curve.” This can be achieved by a filter which varies based on the desired volume level. This example will

demonstrate the process, including the use of several control signals.

The complete system (shown below) has a few key points. As the volume is reduced at the DCSource, the levels of

the bass and treble frequencies will be boosted so that they sound as though they are dropping off at the same

rate as the mid-range frequencies. Note the dotted lines representing all the control signals. This implementation

is also computationally efficient. The control signals have a block size of 1 and do not require much computation.

The main processing is performed by the Scaler and two SOFControl modules.

The VolumeSetting module is a DCSource which outputs the gain setting, in dB; this is a control signal and is drawn

as a dotted line. When configuring the VolumeSetting using module properties set its blockSize and number of

channels to 1.

The first step is to reduce the signal level by VolumeSetting. This is accomplished using the ScalerDBControl

module. This module takes its gain setting from an input pin rather than from an inspector and allows for a control

signal-dependent gain.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 85 of 163

ScalarDBControl
Simple dB scalar; gain controlled by

control signal input

In this example it will be used to allow a DC source to adjust the overall volume. Thus begins the system as shown

below:

Another example of a control signal module is the SOFControl module.

SOF Control
Second-order filter with gain

determined by control signal input

DSP Concepts Audio Weaver Module User’s Guide

 Page: 86 of 163

The SOFControl module allows for a

control signal to adjust parameters

(frequency, gain, or Q) of a second order

filter. The control parameter(s) are

selected in the module’s module

properties. In this case, only the gain is

controlled as shown to the right:

In this example, this will allow for a volume-dependent bass (and treble) boost. The SOFControl module will take in

the audio from the Scalar module as one of its inputs (the lower input pin):

Since the purpose of this filter is to boost bass frequencies, a filter type of “Peak EQ” and a frequency of 30 Hz are

selected in the module’s inspector. The upper input pin of the SOFControl module requires a control signal input.

This control input will originate from the DCSource controlling the volume. To achieve the equal-loudness contour,

the bass must be boosted in relation to the volume. The mapping between the volume and the bass boost is

accomplished with the TableInterp module:

TableInterp
Second-order filter with gain

determined by control signal input

DSP Concepts Audio Weaver Module User’s Guide

 Page: 87 of 163

The TableInterp module allows the user to map out the intended input-output relation visually and interpolates

between given points to produce a continuous function. In this case, the relation shown below will be sufficient:

At full volume (0 dB) there is no bass boost. As the signal level drops more boost is progressively applied. At -80 dB

28 dB of boost is applied. Also note that the table interpolation both takes in and outputs a control signal. Only a

single value is translated through the table’s function at a time.

A sink module can be appended to the output of the table interpolation to show in real-time the computed gain.

Note that when the sink module is given a control signal as input, it will only display the single value, rather than

the graph it normally displays.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 88 of 163

This has accomplished the boosting of the bass frequencies, and the same strategy can be employed to boost the

treble frequencies. This SOFControl will be set to alter the treble frequencies, with a filter type of “Shelf High” and

a frequency of 6000 Hz:.

This TableInterp will use a slightly different relation but will achieve fundamentally the same function – boosting

the level at lower volumes:

DSP Concepts Audio Weaver Module User’s Guide

 Page: 89 of 163

BOOLEAN SIGNALS

A Boolean signal has only two possible values, 0 and 1. Boolean data is useful for controlling systems. Boolean

signals are represented using 32-bit integer values. Audio Weaver includes several modules that perform logical

operations on Boolean signals.

BooleanInvert
Inverts a Boolean signal (logical NOT

gate)

LogicAll

Resolves to 1 if and only if all its inputs

are non-zero (logical AND gate)

LogicAny

Resolves to 1 if any of its inputs are

non-zero (logical OR gate)

By default the LogicAll and LogicAny modules do not have any output wires; they store the output in an internal

variable (“.result”). By checking the box next to “outputValue” in the module properties, an output pin can be

created.

LogicBinaryOp
Performs binary operations on Boolean

data

The LogicBinaryOp module allows the user to select a logical operation (logical AND, OR, and XOR). It takes two

control signals as input and outputs one wire with the computed Boolean value.

BooleanSource
Source module with Boolean data

output

DSP Concepts Audio Weaver Module User’s Guide

 Page: 90 of 163

The BooleanSource module is a source module that supplies a buffer of Boolean data. As with any source module,

the number of channels, block size, and sample rate are user-specified in the module properties.

LogicCompare Compares input values

LogicConstCompare Compares input to constant

The LogicCompare module performs one of many possible comparisons on two input values. In its Inspector is a

drop-down menu of the possible comparisons: EQUAL, NOTEQUAL, LESSTHAN, LESSOREQUAL, GREATERTHAN, and

GREATEROREQUAL.

The module performs the comparison and outputs 1 if the comparison resolves to true and 0 if it resolves to false.

The LogicConstCompare module functions the same way, except it compares a single input to a constant, user-

specified value.

A simple example of the use of the Boolean signals is shown below. This system selects the louder of the two input

channels and outputs it on both channels. To accomplish this, the RMS module measures the levels of the two

input signals and outputs control signals. These control signals are then fed into a LogicCompare control, set to

LESSTHAN comparison type. Its output controls the index of the MultiplexorFadeControl module which selects the

louder of the two input channels.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 91 of 163

If RMS1 < RMS2 then the LogicCompare module outputs 1 and the louder right channel is selcted; if RMS1 >=

RMS2 then the module outputs 0 and the louder left channel is selected.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 92 of 163

PARAMSET AND PARAMGET

Control signals can be used to adjust parameters of modules. This can also be accomplished with the Param Get

and Param Set modules. These are found in the Misc. folder. The example from the previous section can be made

even cleaner by using ParamSet.

The output of the LogicCompare module is fed straight into the ParamSet module, which in turn sets the index of

the MultiplexorFade module. Note that in this version, the multiplexor does not have to be a control module.

Just like ParamGet, the target parameter is specified in the module properties, with “name of the

module”.“parameter to be set”. Also specify the data type of the input wire. In its Inspector, the ParamSet module

allows the user to change the when the parameter update occurs using the setBehavior drop-down menu:

The choices available are:

AlwaysNoSet – Always update the variable in the instance structure. Do not call the module’s set function.

AlwaysDeferredSet – Always update the variable in the instance structure. Call the module’s set function
in the deferred processing thread.

OnChangeNoSet – Only update the variable when it has changed. Do not call the module’s set function.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 93 of 163

OnChangeDeferredSet – Only update the variable when it was changed. Call the module’s set function in
the deferred processing thread.

OnChangeInstantSet – Only update the variable when it has changed. Then call the module’s set function
from the real-time thread. Change occurs immediately.

The many options allow for optimization of computational efficiency by performing the change at a time when it is

most appropriate for the system. In most cases, the OnChangeDeferredSet is the most appropriate.

MATH

ADVANCED MATH

The advanced math modules include the functions see to the right.

The Convolve module is similar to the FIR module, with the property that it can

ignore signal tails. It is normally not used for filtering. Its shape parameter acts as a

truncation control. When the user selects shape 0, no truncating occurs, outputting

normal convolution. If the user selects shape 1, the module will ignore the first N/2

samples of the output, then display the next N samples, followed by ignoring the last

N/2 samples. This is useful for statistics between two data sets. This is essentially

partial correlation.

The Correlate module is similar to the convolve module, except it differs in the order of the output.

Derivative and Integral modules compute discrete derivative and integral equations respectively:

y[n] = 1/dt * (x[n] - x[n-1])

 where dt is the time step, dt = 1/SR.

y[n] = dt/K * sum(x[0] .. x[n])

 where dt is the time step, dt = 1/SR and K is a gain.

BASIC MATH

These modules perform basic math operations.

Adder

Adds signals

DSP Concepts Audio Weaver Module User’s Guide

 Page: 94 of 163

Subtract

Subtracts signals

Multiplier

Multiplies signals

Divide

Divides signals

Reciprocal Computes 1/x

The Adder and Subtract module by default have two input pins. Additional pins can be specified on the module

properties. For the Adder, all inputs are summed together. For the Subtract module, the last input pin is subtracted

from the others. The Adder and Subtract modules both handle signals with multiple input channels.

The Adder module has an additional property that can be selected on the module properties:

When oneChannelOutput is checked then the output will be mono and all input channels will be summed together

to form the output. In this mode, the input pins can have different numbers of channels. By default,

oneChannelOutput is unchecked and all input pins have to have the same number of channels and the output will

be multichannel as well. A useful way of using the Adder is to sum together the left and right components of a

stereo signal. The traditional way is to use a Deinterleave module

DSP Concepts Audio Weaver Module User’s Guide

 Page: 95 of 163

Or, use an Adder module with the number of input pins set to 1 and oneChannelOutput checked:

DSP Concepts Audio Weaver Module User’s Guide

 Page: 96 of 163

In addition to these basic math functions, the Math folder has modules corresponding to the functions in the

standard C math.h library. These modules will be skipped, but here is a preview:

DB CONVERSION

DSP Concepts Audio Weaver Module User’s Guide

 Page: 97 of 163

To convert to and from dB10 and dB20, this folder hosts Approx and exact modules. The Approx modules are less

cpu intensive, and less accurate. To be clear, the UndB modules convert from dB to linear scaling.

LOOKUP TABLES

DSP Concepts Audio Weaver Module User’s Guide

 Page: 98 of 163

The Table Interp module uses a table

with clickable/movable points to discern how the input values

scale into the output pin. For data in between the points, the

scaling is interpolated either linearly or cubicly.

Table Interp2d takes in

a vector input (x and y pins) and scales them

according to the nPoints length matrix. It uses

bilinear interpolation of the table values at the

four neighboring points (above, below, left,

right).

DSP Concepts Audio Weaver Module User’s Guide

 Page: 99 of 163

TableLookup uses either Linear or

nearest interpolation. The user has to specify the upper and

lower bounds of this table. Set the size of the table with the ‘L’

variable found in the arguments:

For non-interpolated lookup tables, an integer index is listed, and output is based on that index’s data value. That

data can be float or int type data.

TableLookupIntFloat: TableLookupIntInt:

DSP Concepts Audio Weaver Module User’s Guide

 Page: 100 of 163

NONLINEARITIES

Modules which implement point nonlinearities and are stateless and easy to understand. They are listed below

and used in the examples later on.

ClipAsym Hard clipper

Polynomial

Polynomial f(x)

Square Squares a signal x*x

Other nonlinearities which are documented elsewhere are the Abs, TableInterp, SoftClip, and TwoPieceInterp

modules.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 101 of 163

TRIG

Trig functions are simple enough to not need much detail. They operate

in radians, not degrees. The following trig functions are provided:

DSP Concepts Audio Weaver Module User’s Guide

 Page: 102 of 163

MISC

Most of these modules are used for debugging, and verification during the product development phase. These

modules are great for testing the hardware, stimulating conditions, profiling, and adding custom interfacing with

the Board Support Package such as GPIO and other (non-audio) input signals. There are also modules in here that

help get around the strict data flow of AudioWeaver by manipulating how the data is represented (i.e. samples

turn into channels, etc).

BIQUAD LOADING

This module builds virtual biquads in memory with a number of max stages, and a

variable that “turns on” the filter function. As data passes through, the mips and

memory will update in the server window. This is useful for evaluating what kind of

processing works and fits on a target. Set maxStages in the Arguments tab.

BLOCK COUNTER

This module outputs the number of blocks processed based on the system BlockSize. This source increments for

each block called at the hardware defined samplerate. It then outputs this value. This is useful for determining how

many blocks get processed in the system, typically for debugging.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 103 of 163

COEFF TABLE

This module is similar to paramSet, except it sends a

vectored variable rather than a singular numeric

variable. Set the coeffs to be sent to the variable by

typing into the properties sheet, then clicking

apply(see right). Upon clicking apply, the coefficient

data is sent to whatever module lies within the

modVar argument. (see below)

COUNTER

This counter module counts at a given interval, with a minimum interval of one msec. This is good for debugging,

as it gives a time constant to determine when(in ms) an issue arises.

CYCLE BURNER

This module is similar to the Biquad loading, except it works in computation cycles per block, and has no inputs or

outputs. This is convenient for testing out multiple block sizes and cpu load for the target.

FIRLOADING

This module is similar to the Biquad loading, except it is more memory intensive. Use this to determine the amount

of FIR modules that can be loaded onto a target.

GPIO

The GPIO module is binary only. It can both accept GPIO signals and send them to the target, based on parameters

in the module properties. The sample rate can also be specified. This should match the setup in the BSP. Most

target chips will have dedicated GPIO lanes, and will specify how to set it up.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 104 of 163

MATH EXCEPTION

This module replaces NAN and INF with the value specified by the user. This is useful for keeping stability in a

system which may require numeric data.

MEASUREMENT

This module is used to measure a room based on a periodic output of the input signal. This is used to average the

recorded signal into the response buffer. The trigger pin starts the measurement upon changing from 0 to 1. Once

the measurement is complete (based on numReps and the length of the signal, L), the trigger is set back to 0.

PARAM GET

The ParamGet module reads the value of a parameter from an existing module and outputs it on a wire for use

elsewhere in the system. Which parameter to output is specified in the module properties, with “name of the

module”.“parameter to be output”. An example of this module can be found in ParamSet and ParamGet.

ParamGet

Outputs a parameter from a specified

module

PARAM SET

The ParamSet module does the opposite: it takes an input from the system and sets its value to a parameter of an

existing module. The key is that this module can set parameters of any type of module, which eliminates the need

to create separate controllable versions of each module. An example of this module can be found in ParamSet and

ParamGet.

ParamSet

Sets a parameter of a specified module

DSP Concepts Audio Weaver Module User’s Guide

 Page: 105 of 163

SAFETY CLIP

This module clips an incoming signal based off of an external trigger. The clip amount can be specified in the

properties. This is used in systems to prevent damage to equipment by digitally clipping loud sources. This usually

results in less gain given.

SAMPLE RATE

This module counts the sample and outputs the estimated sample rate of a system. This is useful for debugging

samplerate related issues.

SET WIRE PROPERTIES

This module is used to change wire properties for a more direct handling of audio weaver data values. It works by

treating the samples as different block sizes, channels, data type, sample rate, and complexity. The only rule is that

the samples in must equal the samples out. For example, at 48k and a block size of 32 stereo signal, that means

there are 32 samples every block, or 64 samples per block of stereo information. These 64 samples can also be

represented as blocksize=64, one channel. Notice the wire info and SetWireProperties modules in the following

design:

While this doesn’t give much advantage in the time domain with standard audio data, this module is especially

strong in the frequency domain to handle signal flow.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 106 of 163

STATUS SET

This module can change the “status” of other modules in the design. This is useful for limiting compute cycles

during runtime. To bypass a module during runtime, the status set module is given a variable name of where to

point, and four controls for the status states: Active, Muted, Bypass, and Inactive. The input takes in an integer

signal 1-4, with any other number gets treated as 1. These numbers represent the four states. If this control signal

gets bypassed, then the status set module cannot turn itself back on. The diagram below is an example of a very

low power “processing” system, which takes advantage of the status set module.

UPDATE SAMPLE RATE

This module updates the sample rate information for wires and modules. It does not change the sample rate. For

that, see the FIR Interpolator and Decimator in the “Multirate” folder.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 107 of 163

MIXERS

Mixers combine separate audio sources into fewer channels, or into each other.

MIXERV3

A Mixer is an M x N array of gains that transform M input channels into N output channels. This is useful for

combining signals together, and consolidating many gain values into a single module. Our Mixer module is

smoothed, and optimized based on the amount of non-zero coefficients specified by the user. It supports input pin

controls or single pin, multi-channel controls. A mixer is good for handling many channels at once, so it excels in

the algorithm for downmixing from surround sound 5.1 to stereo. This means transforming 5 input channels to 2

output channels:

The Mixer module holds a matrix representing the downmix equations, which are

shown in its inspector (in linear units):

Lt = L + -3dB*C + -3dB*(-Ls -Rs)

Rt = R + -3dB*C + -3dB*(Ls + Rs),

The Mixer module stores a matrix of all the gain coefficients and performs matrix multiplication to apply the gains

to the appropriate channels. When the matrix becomes large, this computation becomes very expensive. It may be

beneficial to deinterleave out channels if they don’t require the mixing stage.

SMIXER2X1

This mixer takes in two pins of arbitrary

channel count and outputs the sum of the

two with a scale factor specified in the

module’s variables.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 108 of 163

WET DRY

This module is similar to the 2x1 mixer, except the two pins are exclusively balanced from one another to achieve

either same energy or same amplitude. This setting can be configured in module variables. The linear mixing value

represents the ratio from 0-1 of the mixing of the signals. A value of .5 means equal mix from both signals, and is

similar to the Smixer2x1 module. Values under .5 mean that the signal is less “wet” so more of the “dry” pin comes

through. Values over .5 drive more of the “wet” pin.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 109 of 163

MULTIRATE

MULTIRATE PROCESSING

Audio Weaver is able to process signals at different samples rates all within the same layout. This was seen with

control signals but the feature is much more powerful. Audio Weaver is able to handle multirate processing in two

different ways:

1. Single block time processing

2. Multiple block time processing

In single block time processing all of the audio modules execute within a single thread at the same rate. In multiple

block time processing there are multiple threads on the target processors and different block times execute within

separate interrupt levels. Each approach is described in turn.

SINGLE BLOCK TIME PROCESSING

A module has an associated block size and sampling rate. We’ve been treating these wire properties as separate

information but when combined they yield the block time of a module. For example, consider the system shown

below.

The sampling rate is 48 kHz and the block size is 32 samples. Each block of audio thus represents 32 / 48000 = 2/3

msec of audio. 32 sample audio buffers arrive every 2/3 msec and each block executes in turn.

There are 4 modules which can be used to change the sampling rate and still maintain the same block time.

Upsampler

Inserts zeros between samples. No

filtering

DSP Concepts Audio Weaver Module User’s Guide

 Page: 110 of 163

Downsampler

Discards samples. No filtering.

FIRInterpolator

Upsampler followed by an FIR

interpolating filter

FIRDecimator

FIR filter followed by a Downsampler

The Upsampler and Downsampler modules insert zeros and discard samples, respectively. Specify the up and

downsampling factors on the module properties. The downsampling factor must be chosen so that it divides the

input block size and yields an integer number of output samples. Consider the system shown below:

As before, the input block time is 2/3 of a millisecond. The Upsampler module is configured for an upsampling

factor of L=2. The output sampling rate is 96 kHz and the block size is now 64 samples. Note that 64/96000 = 2/3

millisecond and the block time is preserved. As before, all modules execute every 2/3 millisecond.

The Upsampler and Downsampler modules correspond to standard up and downsamplers found in DSP text books.

Since they lack any filtering, they are rarely used.

The FIRInterpolator and FIRDownsampler modules, on the other hand, contain FIR filters. The FIRInterpolator

inserts zeros and then filters the resulting signal with a lowpass filter; the FIRDecimator first applies an FIR lowpass

filter and then decimates. Both modules use an efficient polyphase implementation to reduce the processing load.

These modules also preserve the underlying block time.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 111 of 163

On the module properties for the FIRInterpolator / FIRDecimator specify the up / downsampling factor as well as

the length of the FIR filter. The length of the FIR filter must be an integer multiple of the up / downsampling

factors. When the modules are instantiated the FIR filter coefficients are computed using a Hamming window.

Advanced users can change the filter coefficients by using Matlab scripts.

The Rebuffer module stores and overlaps buffer data into larger block sizes, allowing for more data to be

displayed. It does not change the fundamental block size for the system.

Rebuffer [Core32]

Overlaps data into larger block sizes,

allowing for longer time displays. Does

not change fundamental block size

The Rebuffer can accept data of any type. In its module properties is a variable called “outBlockSize,” which allows

the user to set the output block size for the module. If a positive value is entered, that value is used as the output

block size. If a negative value is entered, the value is used as a multiplier to the input block size. For example, an

outBlockSize of 32 will yield an output of block size 32, and an outBlockSize of -8 yields an output with 8 times the

block size of the input.

For example, the following block diagram shows a SinGen source wired directly to a Sink module to view in the

scope display:

However, the scope display shows only a small amount of data (in this case, 0.67 msec, based on the example

above with a block size of 32 and sample rate of 48000 Hz):

DSP Concepts Audio Weaver Module User’s Guide

 Page: 112 of 163

To extend the amount of displayed data, a Rebuffer module with outBlockSize -8 is added between the source and

the sink:

This allows the Sink module to display 8 times the amount of data, easily spanning the 4-msec window:

DSP Concepts Audio Weaver Module User’s Guide

 Page: 113 of 163

The Rebuffer module is also useful for

multirate processing. The Rebuffer module

increases the output block size while

keeping the sampling rate and block time

constant. It achieves this by outputting

blocks which overlap in time. Consider the

system shown below. The input block size

is 32 samples and the Rebuffer module is

configured to output 128 sample blocks.

Each block that is output overlaps the previous one by 96 samples as shown below.

Output Block 0

Output Block 1

Output Block 2

Output Block 3

The Rebuffer module is useful for frequency domain processing when it is necessary to have a certain amount of

overlap between blocks. The inverse of the Rebuffer module is the BlockExtract module. This module extracts a

subset of samples and reduces the block size.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 114 of 163

MULTIPLE BLOCK TIME PROCESSING

In some applications processing needs to be performed at multiple block times. Consider a system that has low

latency processing with a block size of 32 samples combined with frequency domain processing at a block size of

256 samples. At a 48 kHz sampling rate, the 32 sample processing would occur every 2/3 millisecond while the 256

sample processing would occur every 5 1/3 millisecond. This type of processing is achieved using the BufferUp and

BufferDown modules.

BufferUp

Buffers up to larger blocks without

overlapping.

BufferDown

Buffers down to smaller blocks without

dropping samples.

The BufferUp module generates larger non-overlapping blocks. On the module properties dialog specify the output

block size either as an integer number of samples or as a multiple of the input block size. In the example above, to

go from 32 to 256 samples, specify a 256 sample block size (or a multiplier of 8). To return to a 32 sample block

size, use the BufferDown module. Again, explicitly specify the output block size either as an integer number of

samples or as a divider.

The system shown below combines 32 and 256 sample block sizes.

In the figure, the name of the filter module is shown as “SOF1 [1/8]”. The annotation [1/8] indicates that this

module executes in a separate thread at a rate of 1/8th compared to the others. The BufferUp module indicates

[1/1  1/8] which means that the part of the module operates at the full rate (1/1) and part of the module

executes at the 1/8 rate. The output of the BufferUp module contains 256 samples which equals 8 32-sample

blocks. The output is non-overlapping as shown here.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 115 of 163

Output Block 0Output Block 0

Output Block 1Output Block 1

Output Block 2Output Block 2

The BufferUp and BufferDown modules contain internal double buffering to connect the two processing rates. The

double buffering introduces a latency equal to twice the larger block size. In the example above, the latency

through the BufferUp, SOF, and BufferDown modules equals 512 samples.

On the target processor, the 32 and 256 sample processing occurs in different threads (or interrupt levels). The 32

sample processing occurs in a higher interrupt level and actually interrupts the 256 sample processing. The pattern

of processing would be as shown below. The 32 sample block processing occurs at a uniform rate. When the 32

sample processing is not active then the 256 sample processing has a chance to execute. The 256 sample

processing must complete before the next 8 blocks of 32 samples arrive.

32 sample block
processing

256 sample block
processing

Running at multiple block times can lead to erroneous module profiling results for the larger block time. The small

block time is correct but the large block time incorrectly includes the time needed to execute the smaller blocks.

Be aware of this when viewing profiling results.

Another limitation of Audio Weaver is that the smallest possible block time in the system corresponds to the

fundamental block size of the target system. This means that the smallest block time occurs at the input pin of the

system. Audio Weaver buffers can only BufferUp to larger block times. When using a platform with a fundamental

block size of 32 samples, it is not possible to BufferDown to a 1 sample block size for stream processing.

One final note, not all targets support multiple block times. Refer to the user guide of the specific hardware target

to see if this feature is supported.

SIGNAL MANAGEMENT

SIGNAL ROUTING

Signal routing modules are modules that manipulate the flow of data. This is done on a few different levels. The

marker module is a simple fix to wiring components overlapping, and has no effect on the runtime algorithm. This

module can also be used as test points to view signal response. There are also modules that control channel flow,

allowing interleave/deinterleave, or even the routing of one channel into another, and finally the multiplexing to

choose between various signals. Data type conversion occurs when the samples are all converted into another

numerical format. The more complicated modules in this folder control block flow and sample flow.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 116 of 163

MULTIPLEXORS

Multiplexors (or Muxes) are logic elements that allow different signals to be selected based on an index (or

control) value. Muxes are useful for setting up A/B comparisons to allow accurate comparison of two different

signals. Multiplexors support multichannel signals and the number of input pins (number of signals to select from)

is specified as a constructor argument.

There are 3 different types of muxes:

General Multiplexor Control

Just copies data; no smoothing

Supports any 32-bit data type

Index taken from inspector or from a

control pin

Multiplexor (float)

Supports smoothing for switches and

crossfading into/from silence.

Floating point

Has control pin

Sample Multiplexor Control Sample based mux, no smoothing

 Only has control pin

If the signals that are switched between is a control signal or a signal where discontinuity is not

important, then choosing 0 smoothing or 0 fade time has computational advantages.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 117 of 163

The index variable is zero based and determines which signal is selected. If there are two

signals to select from, then the inspector is drawn as a checkbox. Unchecked (zero)

selects the first signal and checked (one) selects the second signal.

If there are more than two signals to select from the inspector has a drop list :

Here are a few examples of how to use a

multiplexor module in practice. MultiplexorFade

performs seamless crossfading between signals.

In this first example, the multiplexor is being

used to enable an optional equalizer.

In the next example, 2 different versions of an algorithm are compared to see which one sounds better. This is a

classical “A/B” comparison in audio.

MARKER

DSP Concepts Audio Weaver Module User’s Guide

 Page: 118 of 163

The Marker module is used label wires in the design and also to make wire routing prettier. The Marker module is

a virtual mode and is removed from the system when it is built. The Marker module is very frequently used. Add a

Marker module to the layout by right-clicking on an empty portion of the canvas and selecting Add Marker.

Below is an example of how to use the marker module to clean up a design. Initially the wire goes through the text

label of a module making it difficult to read.

Now reroute the wires with as few or as many markers as needed.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 119 of 163

The second use of the Marker module is in computing frequency responses. get the frequency response of an

individual filter by right-clicking on it and selecting “Plot Frequency Response”. With a chain of filters, insert

Marker modules at the input and output wires.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 120 of 163

Then using the Measurement menu plot the frequency response between Markers M1 and M2. This is given in

Tools->Measurements.

The measurements made will be saved here, allowing

for easy updating of plots.

Finally, the plot will pop up in its own window with the standard

matlab plot capabilities, as well as an “update” button to redraw the

frequency or phase response of the system. Use this to see how filters

are responding with each other. This is based on the filter coefficients,

so this feature doesn’t work on every module. For reading the output

of modules, use the sink modules.

INTERLEAVE/DEINTERLEAVE

Two of the most basic modules are the Interleave and Deinterleave modules.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 121 of 163

Deinterleave

Turns multichannel signals into separate mono

signals.

Interleave

Combines multiple mono channels into a single

interleaved signal.

These modules are part of the default system which is created when starting a new design. For the Deinterleave

module specify the number of output channels on module properties and it must match the number of input

channels. If there is a mismatch an error will pop up when the system is built.

The Interleave module takes N input signals and combines them into a single multi-channel output. The number of

input pins is specified by module properties. One special property of the Interleave module is that not all input pins

have to be mono. In fact, any number of channels per input pin converts to the output simply “stacking” all of the

input channels.

In the first example, a stereo input’s left channel is delayed by 10 msec.

In the next example two stereo signals (L/R and Ls/Rs) are combined together with two mono channels (C and LFE)

to form a 6 channel output. The channels in the interleaved output pin will be ordered: L / R / Ls / Rs / C / LFE.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 122 of 163

ROUTER

The Router module simply copies input channels to output channels. The module solves many common signal

management issues like selecting or recombining channels and in most cases is more efficient than using

Interleave and Deinterleave modules.

Router

Copies and combines audio channels.

No smoothing.

RouterSmoothed

Copies and combines audio channels.

With smoothing.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 123 of 163

In its most general form, the Router module has M input pins and N output channels. The numbers M and N are

specified on the module properties:

For simplicity, we’ll start with a single input pin and then build up to the

more complicated case of multiple input pins.

In order to use the Router module effectively, how the channel routing map is specified must be understood. The

module has a .channelIndex array of length N, where N is the number of output channels. The input channel to

copy to the nth output channel is specified by channelIndex[n] and the channels are ordered starting with 0. Let’s

start with a simple example. Suppose that a stereo signal needs the right channel extracted. This can be

accomplished with two modules as shown below. The NullSink module is used to tie off the unused left channel

output.

Alternatively, the same function can be accomplished with a single

router module. Configure it for a single input pin (M=1) and a single

output channel (N=1). Then set channelIndex[0] = 1. This copies the

right channel (the second channel is chosen due to the index set to 1) to

the first output channel.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 124 of 163

In the second example, a sound card with 12 input channels is used. The

2 target audio channels are contained in the last two input channels. In

this case, configure the router module for 1 input pin and 2 output

channels. Then set the channelIndex array as shown to the right.

For the final example, crossfeed between the left and right channels. That is…

𝐿𝑜𝑢𝑡=𝐿𝑖𝑛+0.25𝑅𝑖𝑛

𝑅𝑜𝑢𝑡=𝑅𝑖𝑛+0.25𝐿𝑖𝑛

The router module can be used to swap the order of the left and right channels making it easy to implement the
crossfeed utilizing stereo processing.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 125 of 163

Consider the case of a router module with multiple input pins. Each element of the channelIndex[] array is treated

as a 32-bit unsigned integer and packs in a pin# and channel# as follows:

channelIndex[n] = (pinNum << 16) + channelNum

That is, the pin number is in the high 16-bits and the

channel number is in the low 16 bits. Thus far, all

examples have had a single input pin starting at

pinNum = 0 setting the focus on channelNum, some

positive integer offset.

Suppose that there are two wires holding 5.1 channel

data. The channels are ordered as L0 / R0 / Ls0 / Rs0 /

C0 / LFE0 in the first wire and L1 / R1 / Ls1 / Rs1 / C1 /

LFE1 in the second wire. The goal is to form a new 5.1

channel signal by combining the signals as L0 / R0 /

Ls1 / Rs1 / C0 / LFE0. This can be accomplished with a

single router module as follows.

The values in the channelIndex array are computed as5:

Pin 0, Channel 0  (0 << 16) + 0 = 0

Pin 0, Channel 1  (0 << 16) + 1 = 1

Pin 1, Channel 2  (1 << 16) + 2 = 65538

Pin 1, Channel 3  (1 << 16) + 3 = 65539

Pin 0, Channel 4  (0 << 16) + 4 = 4

Pin 0, Channel 5  (0 << 16) + 5 = 5

The Router module can handle any 32-bit data type. The channelIndex array can be changed at run-time and the

change in router occurs instantly without smoothing. For a smoothly varying channel router without pops or clicks,

use the RouterSmoothed module.

5 The notation (pin << 16) represents a left shift by 16 bits. Alternatively this equals (pin * 65536).

DSP Concepts Audio Weaver Module User’s Guide

 Page: 126 of 163

SINKS

Sink modules have an input pin but no output. Sinks are used to tie off unused module pins or for plotting of

immediate data.

NullSink

Ties off unused module outputs.

No internal buffer.

Sink

Copies Floating point data from the wire to an

internal buffer. Can be used as a scope display.

 Boolean Sink

Triggers a light (via inspector) on if “true” and off if

“false”

 Triggered Sink

Sink that copies data when input control is

nonzero, else it does nothing.

 Sink Int
Copies Int Data from wire to internal buffer. Can

be used as a scope display.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 127 of 163

NULL SINK

One of the examples from above used a NullSink module to tie off an unused output pin:

The left channel output is attached to a NullSink module and completely ignored. The NullSink does no processing

and uses very little memory (only for its instance structure).

SINK

The Sink module, on the other hand, has an internal buffer equal in size to the input wire. At run-time, the Sink

module copies the data from the input wire to the internal buffer. This takes some processing and some memory.

The interesting feature of the Sink module is that the inspector has a scope display that shows the real-time wave

form.

If the Sink module is displaying a signal with a block size of 1 then the inspector just shows the value (no

waveform). This is useful for displaying the contents of control signals.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 128 of 163

The Sink module shown above is in a system that has a 32 sample block size and displays less than a millisecond of

data. The Sink module is often used in conjunction with the Rebuffer module to display longer time sequences. For

example, Rebuffer6 the data into a 1024 sample block and then attach this to a Sink module.

The waveform shows would be about 23 msec in length as shown below and also shows two channels of data.

METER

If only an instantaneous view of a system value is desired, the Meter module can be used instead.

Meter

Shows instantaneous dB level in

inspector; has multichannel input and

separately meters each channel

6 The Rebuffer module is described in Multirate.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 129 of 163

The Meter module’s instantaneous display is shown in its inspector and the inspector expands to include multiple

channels.

The ClipIndicator module also provides instantaneous feedback in real-time, but it only displays whether or not

audio is being clipped (i.e. the signal exceeds 0 dB).

ClipIndicator Shows instances of clipping in real-time

A black box in the inspector indicates no clipping is occurring:

A red box alerts the user to clipping:

One of the examples from above used a NullSink module to tie off an unused output pin:

DSP Concepts Audio Weaver Module User’s Guide

 Page: 130 of 163

The left channel output is attached to a NullSink module and completely ignored. The NullSink does no processing

and uses very little memory (only for its instance structure).

SPATIAL

This module folder hosts the balance module, used for arranging a stereo space using L and R controls.

STATISTICS

The RunningMin/Max module can be used to find minimum and maximum of values being processed in real-time.

The module keeps track of the min and max values seen over all time and the process can be restarted using a

checkbox on the inspector.

RunningMin/Max

Stores the minimum and maximum

values seen thus far. Can output the

value, but this is off by default

This module can output the minimum and maximum values as well as storing and displaying them in the inspector,

but this is off by default. It can be turned on by selecting the checkbox next to “outputValue – output type” in the

module’s module properties:

DSP Concepts Audio Weaver Module User’s Guide

 Page: 131 of 163

The RunningMinMax module is particularly useful for tuning dynamics processors. To ensure that a signal does not

exceed a set level, the RunningMinMax module can be configured to display the peak level seen over time.

SUBSYSTEM

This folder holds the subsystem module, as well as input and output pins for that module. These SysIn and SysOut

modules should be placed withing the subsystem. Their names can be changed, and will be displayed on the

subsystem as this name. Subsystems are used to keep a system abstracted and clean. They can be copied and

pasted, retaining all variables and module arguments. Finally, they can be bypassed in order to bypass all modules

within.

SOURCES

Sources have no input but output a signal to be used elsewhere in the system. The output block size, number of

channels, and sample rate are constructor arguments. They can be entered manually in the module properties, but

will default to those of the system input pin if left empty. If a source module is used within a subsystem then the

properties of the source module will be based on the first input pin of the subsystem. The parameters of the

source can be changed at runtime via its inspector.

Warning – sources are often very loud (0 dB) and must be followed by a scalar to reduce the level.

The following source modules are available in the Source folder:

SineGen
Sine wave generator with no

smoothing

SineSmoothedGen

Sine wave generator with smoothing

Source

Continuously copies data from internal

buffer to output wire

DCSource

Continuously outputs DC value to

output wire

DSP Concepts Audio Weaver Module User’s Guide

 Page: 132 of 163

ImpulseSource

Periodically outputs an impulse; period

specified in samples

ImpulseMsecSource

Periodically outputs an impulse; period

specified in msec

PeriodicSource

Continuously outputs a stored array of

data. The internal buffer length is

specified by module properties.

PulseGen

Generates periodic rectangular pulse,

with period and on time specified in

msec

Randi

Generates slowly varying random noise

with linear interpolation between

sample values

Sawtooth

Generates a sawtooth wave (ramps up

linearly from 0 to 1, then repeats) with

specified frequency

WhiteNoise

Generates uniformly distributed white

noise

PinkNoise

Generates pink noise by applying an IIR

filter to internally generated white

noise

DSP Concepts Audio Weaver Module User’s Guide

 Page: 133 of 163

Oscillator
Generates oscillations with specified

frequency and start phase

A table of sample waveform outputs from some of the most basic sources follows:

SineGen / SineSmoothedGen

Sawtooth

DSP Concepts Audio Weaver Module User’s Guide

 Page: 134 of 163

WhiteNoise

PinkNoise

DSP Concepts Audio Weaver Module User’s Guide

 Page: 135 of 163

DCSource

(outputs one steady value)

Randi

DSP Concepts Audio Weaver Module User’s Guide

 Page: 136 of 163

LARGER EXAMPLES

SPEAKER SPREADER

Below is an example of a speaker spreader system and a discussion of how it is built up from individual modules.

A speaker spreader widens the image of a stereo signal. To accomplish this, some mathematical modules are used.

First, a Deinterleaver module must be used to separate the channels. The separate left and right channels are then

fed into a SumDiff module. The SumDiff module takes two inputs and outputs both half their sum and half their

difference, as shown below.

If Inputs 1 and 2 are the left and right channels, then Outputs 1 and 2 have special properties. Output 1 (the sum)

is the portion of the signal that forms the center image, while Output 2 (the difference) is the stereo or wide

portion7. By boosting or reducing these, stereo image width increases and decreases. The Scaler modules that

follow will be used to control the system in real-time (hence the smoothing).

After scaling, the signals are then passed through another SumDiff module to help us return to proper Left and

Right channels, shown below.

7 The representation of the signal as (L+R) and (L-R) is also called MS or Mid-Side.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 137 of 163

Mathematically, the signals are now half the level they started out as, so after the Interleaver module recombines

the channels, a Scaler module applies a linear gain of 2.

The Multiplexor module is used to show the difference the speaker spreader makes. By selecting and deselecting

its index, the module toggles between the spreader and the unprocessed signal in real-time. Increasing the gain on

the difference channel should spread the sound image.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 138 of 163

LOUDSPEAKER PROCESSING - STEREO

Below is an example of a system for loudspeaker processing, followed by a discussion of its components.

The BassTone and TrebleTone modules are SecondOrderFilterSmoothed modules achieve bass and treble boost,

respectively. The bass boost SOF module is set to ShelfLow with a frequency of 200Hz, and the treble boost SOF

module is set to ShelfHigh at a frequency of 3.5 kHz. This way, they can be used to separately control the gains of

the bass and treble frequencies.

The Volume module is then used to set the volume for the system once bass and treble are set to their desired

levels.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 139 of 163

The next SecondOrderFilterCascade module is the speaker EQ. It has four separate filter stages. These filters are

set to bypass but they can be configured based on the characteristic of the speaker.

The final portion of the system implements speaker protection using a limiter.

In this design, the MaxAbs modules takes the left and right channels, computes the absolute value, and then

chooses the last of the left and right channels. The output of the MaxAbs module represents the loudest channel

in the system. The AGCLimiterCore module then computes a time varying gain which is used to restriction the

DSP Concepts Audio Weaver Module User’s Guide

 Page: 140 of 163

signal level. The AGCLimiterCore has the standard controls of threshold, attackTime, decayTime, and an optional

soft knee. The output of the AGCLimiterCore module is a time varying gain and this multiplies the original left and

right channel. The DelayMsec module is a “look ahead delay” and allows the limiter to adjust its gain in advance of

sharp signal transients. The look ahead time in this example is set to 2 msec.

In the design above, the left and right channels are limited simultaneously based on the signal level in the louder

channel. The advantage to this design is that it preserves the stereo image of the signal. If the goal is to maximize

the output SPL level then use independent limiters on the left and right channels as shown below:

DSP Concepts Audio Weaver Module User’s Guide

 Page: 141 of 163

The AGCLimiterCore module has time constants and it is still possible for the module to miss sudden transients

which could cause the output level to exceed 1.0. Use a SoftClip module as shown below to ensure that the output

never exceeds 1.0.

The SoftClip module acts as a point nonlinearity. Signal values below the threshold are unaffected. Values above

the threshold are scaled do and will never exceed 1.0.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 142 of 163

OVERSAMPLING PEAK DETECTION

A digital audio signal contains samples of the underlying analog wave form. Although the digital samples may form

an accurate representation of the signal, the digital samples may miss some behavior of the analog signal between

samples values. This can usually be ignored but it can be important if the signal is to be output to a DAC. Consider

the waveform shown below.

If only the digital sample values are seen, the true peak is missed and it is possible for this signal to clip when

converted to analog. The analog signal is exceeding the allowable range, and can harm the playback system.

In order to prevent this, first see what is happening between samples. This can be accomplished using

oversampling together with a RunningMinMax module. Oversampling is used in the layout below by factors of 2

and 4 using the FIRInterpolator module. The RunningMinMax module is used to compare the sample value in the

original 44.1 kHz waveform against the peak found in the 88.2 kHz and 176.4 kHz oversampled signals.

Missing the peak only occurs if there is high frequency content in the signal; something with cymbals is ideal. In

our test, a piece of processed pop music was played. The peak value in the 44.1 kHz signal is 0.999969 – basically

full scale. The true peak is actually 1.00489, or 0.042 dB. To prevent digital clipping of the analog waveform reduce

the signal level by this amount or set the limiter threshold 0.042 dB lower.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 143 of 163

DSP Concepts Audio Weaver Module User’s Guide

 Page: 144 of 163

AUTOMATIC GAIN CONTROL

Automatic Gain Controls or AGC are commonly found in volume leveling and microphone applications. The

function of an AGC is to intelligently adjust the level of a signal and manipulate the dynamic range of a signal. This

section provides several different AGC designs that are applicable in a wide range of application.

SIMPLE AGC

The most basic system utilizes the AGCCore module which was introduced in the Dynamics section. This modules

computes the smoothed RMS level of the signal and steers the gain of the signal towards the specified targetLevel.

In this example, the targetLevel is set to -20 dB and use a smoothingTime of 500 msec for slow and steady

adjustment. The ratio is set to 100 indicating that the AGC will adjust the level of the signal so that the output RMS

level is close to -20 dB.

PERCEPTUAL AGC

A natural step is to have the AGC take into account the perceived loudness of the signal. This is easily done by

adding an equalizer in the side chain. A natural choice would be the AudioWeighting module found in the Filters

folder. The ITU468 filter setting is designed to match the loudness perception of the human auditory system.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 145 of 163

The AudioWeighting module can also do standard weightings like A-weighting, C-weighting, etc.

TWO STAGE AGC

The AGCCore module is designed to operate slowly on audio signals; it is analogous to turning the volume setting

on the sound system. It works well over long periods of time but over shorter intervals it may let some loud peaks

through. To prevent this reduce the smoothingTime of the AGCCore but this is not a good solution since artifacts

will be heard.

A better solution is to add a second stage of processing – a limiter – with a faster time constant. The limiter is

configured to have a threshold of -15 dB and a ratio of 2. The time constants are faster with an attackTime of 30

msec and a release time of 200 msec. When there is a sudden loud peak the limiter kicks in until the AGC has had

time to make gross level changes.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 146 of 163

THREE STAGE AGC

The limiter in the two stage design catches most peaks. The AGCCore module can add gain to the signal and when

a loud passage follows the signal level after the AGCLimiter core may still exceed 0 dB and clip. To prevent this, add

a final fast limiter stage and a soft clipper. These two modules only act on the sudden peaks and prevent clipping

of the output.

MULTIBAND AGC

All of the AGCs thus far are single band and operate on the entire signal at each stage. This can lead to pumping in

which a loud low frequency signal (like a drum beat) can cause the entire signal to reduce in level. Instead, it is

better to treat the low and high frequencies separately especially since there is so much energy in the low

frequency. This brings us to a multiband approach in which the signal is split into two components using a

crossover and treat the high and low frequencies individually.

The three stage AGC above will be used as a starting point. For the multiband approach, the Limiter_Slow

subsystem is capable of operating in two bands. The crossover module and two separate limiters are shown below.

The crossover frequency is set to 200 Hz which does a good job separating out drum beats. The limiters are tuned

so that the one operating on low frequencies has slower time constants then the one at higher frequencies.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 147 of 163

DISCRETE DYNAMICS PROCESSORS

So far, dynamics processors have been built using several “core” modules: AGCLimiterCore, AGCCompressorCore,

and DownwardExpanderCore. For more control, it is possible to build these “core” modules out of several discrete

modules. We’ll model the AGCLimiterCore and similar approaches can be used for other modules. The block

diagram is shown below:

The main steps are:

DSP Concepts Audio Weaver Module User’s Guide

 Page: 148 of 163

1. As with the limiter module, the Abs or (MaxAbs for stereo) module is used to find the maximum level of

the signal in real-time. This maximum level is fed into the AGCAttackRelease module, which creates an

envelope detector with specified attack and release times, in the same way that the attack and release

times can be set in the limiter module.

2. The Db20 module converts a linear input to decibels. The gain calculation will be performed in dB units,

and then the Undb20 module will be used to convert back to linear units before the computed gain is

used to modify the audio.

3. The TwoPieceInterp module applies a piecewise function made of two lines with different slopes,

connected by a smoothing polynomial (the knee). With a slope of 1 below the threshold and less than 1

above it, this will allow the system to reduce the level of the signal once it crosses the threshold, just like

the limiter module.

4. This computed value is subtracted from the original to produce the correct gain (this may sound

counterintuitive, but remember that as the level increases, a larger amount must be subtracted from the

gain to produce a limiting effect).

5. Finally, the computed gain in dB must be converted back to linear units with the Undb20 module and fed

into the AGCMultiplier module.

The modules used are:

AGCAttackRelease
Creates envelope detector with specified

attack and release times

Db20

Converts from linear units to dB

TwoPieceInterp Applies two-piece piecewise function

TableInterp
Applies function from specified table

interpolation

Subtract

Dynamically determines a gain based on

a piecewise function in order to limit a

signal

DSP Concepts Audio Weaver Module User’s Guide

 Page: 149 of 163

Undb20 Converts from dB to linear units

With the TwoPieceInterp module specify the slow of the gain curve above and below the threshold. One simple

change can expand the functionality even further. Using a TableInterp module instead of the TwoPieceInterp

allows the user to visually map out exactly the desired behavior:

Use the TableInterp module to “draw” the input / output gain curve as shown below:

DSP Concepts Audio Weaver Module User’s Guide

 Page: 150 of 163

This allows for the building of highly custom dynamics processors with designed behaviors such as expansion,

compression, and limiting occurring over different gain ranges.

COMPUTATIONALLY EFFICIENT DYNAMICS PROCESSORS

With the exception of the AGCCore module, the rest of the dynamics processors operate on a sample-by-sample

basis and require complex mathematical calculations (dB, undB, etc.). Dynamics processors can easily consume a

large amount of processing, but Audio Weaver allows for a much more efficient variation. This general technique

can be used to improve the efficiency of many types of algorithms.

The main problem with the dynamics processors is that the gain calculation occurs every sample. If the time

constants are on the order of several milliseconds then there is really no need to update the gains this quickly.

Instead, it is possible to perform the gain calculation at a decimated rate and this is achieved using the

SubblockStatistics module.

The decimation factor is specified on the module properties as the subblockSize argument:

DSP Concepts Audio Weaver Module User’s Guide

 Page: 151 of 163

The decimation factor must be chosen so that it evenly divides the input blockSize. Next, specify on the inspector

exactly which statistic is computed per subblock. The choice mirrors the ones available in the

BlockStatisticsModule.

For a limiter, choose the MaxAbs statistic. Suppose that the input blockSize is 32 samples and the decimation

factor is 8. The output blockSize will then be 4 samples and each sample will contain the MaxAbs value of the

corresponding set of 8 input samples. A limiter built using the SubblockStatistics module is shown below. The

arrangement is more efficient since the limiter is only doing 1/8 as much work as before. The Multiplier module is

no longer being used. The Multiplier module requires that the blockSizes of the gain and signal pins be the same.

Instead, the ScalerV2 module is used which can accept subsampled gain values.

If the signal can be decimated for the limiter even further, considering using a BlockStatistics module instead of a

SubblockStatistics. This is shown below and the gain calculations are done with a blockSize of 1 sample. These

signals are referred to as control signals and are described in the Logic section.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 152 of 163

DSP Concepts Audio Weaver Module User’s Guide

 Page: 153 of 163

MICROPHONE DE-ESSING

A common complaint of microphone recordings is that the sibilant sounds (“s”, “z”, and “sh”) are too prominent

and harsh. This is because the microphone is very close to the talker and picks up more of these high frequencies.

The problem area is in the range from 4 kHz to 10 kHz and depends on the talker. A fairly common frequency to

concentrate on is around 8 kHz. An overview of the problem and approaches can be found at

http://en.wikipedia.org/wiki/De-essing.

BROADBAND DE-ESSING

In the broadband approach the entire signal level is reduced when harsh high frequencies are detected. A standard

AGCLimiterCore can be used with a sidechain EQ which accentuates the 8 kHz problem frequencies.

The downside of this approach is that when sibilants are detected the gain of the entire signal is reduced; this is

not ideal.

SPLIT BAND DE-ESSING

One improvement is to use a crossover and treat sibilant and non-sibilant frequencies separately. A 2-way

crossover with a cutoff frequency of 6 kHz is used. A limiter then acts on the high frequency signals and reduces

the gain, if necessary; the low frequencies are untouched.

http://en.wikipedia.org/wiki/De-essing

DSP Concepts Audio Weaver Module User’s Guide

 Page: 154 of 163

DYNAMIC EQUALIZING DE-ESSING

It is still possible to do better. In the Split Band De-essing all signals above 6 kHz are reduced in gain if sibilants are

detecting. The design below is even more precise. A bandpass filter around 8 kHz detects sibilants.

The output of the bandpass filter drives a limiter core and this in turn reduces the gain of a controllable second

order peak filter. This limits the gain reduction to the range of frequencies from 6 to 10 kHz. The entire system is

shown below:

10
2

10
3

10
4

10
5

-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

Frequency (Hz)

d
B

BPF

DSP Concepts Audio Weaver Module User’s Guide

 Page: 155 of 163

DSP Concepts Audio Weaver Module User’s Guide

 Page: 156 of 163

MICROPHONE DE-POPPER

Another problem with microphones is that if the talker is too close then every plosive (a consonant with a puff of

air like a “p”) causes a mini explosion. This also occurs with fixed microphones if the speaker bangs their hand on

the podium. The solution to this problem is a “De-Popper” which is another form of dynamics processor. Instead of

focusing on high frequencies like the De-Esser the focus will be on low frequencies below 150 Hz. The derivative of

low frequency energy (i.e., changes in energy over time) engages the limiter only for positive slopes. The block

diagram is shown below:

The RMS module computes the energy over a 40 msec running window and the derivative module looks for

changes in energy. Constant low frequency energy doesn’t trigger the limiter at all.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 157 of 163

FEEDBACK EXAMPLE

Below is an example of a system using feedback. This system creates a series of echoes by adding to the audio a

delayed, scaled down copy of itself. The wire from the output of the ScalerV2 module to the top input of the Adder

module is feedback:

Build and run the system to see the build error shown above. The problem occurs because Audio Weaver is unable

to determine that there is feedback in the system; this must be manually indicated.

Right-click on the wire at the output of the ScalerV2 module, select “Feedback,” and then specify the feedback

properties. In this case, the feedback wire is stereo and has the properties shown below.

DSP Concepts Audio Weaver Module User’s Guide

 Page: 158 of 163

The system can then be redrawn and the feedback wire will be marked in blue.

A simple addition of an ImpulseMsecSource and Interleave module to this system allows for an excellent

demonstration of the echo property caused by the feedback:

With the impulse set to a period of 1000 msec, the delay module set to 100 msec, and the first scalar module set

to -3dB (the second scalar should be set around -10dB to lower the level – remember, sources are very loud), the

echo should be very clearly audible. Those settings can be changed to explore their effects on the echo, but be

warned that if the first scalar’s gain surpasses 0dB, it will cause instability as it will increase the level of the signal

that eventually feeds back into itself! A gain lower than 0dB will cause the echoes to gradually fade. The

multiplexor can be used to switch between the impulse source and sample audio.

A more sophisticated example of feedback can be seen in the Audio Weaver Reverb example, found with the path:

Examples/Designer/Float/reverb.awd:

DSP Concepts Audio Weaver Module User’s Guide

 Page: 159 of 163

Double-click on the Reverb subsystem to open it and scroll to the right to see a very large (8-channel) blue

feedback wire used to create the semi-random echoes that constitute the reverberation:

DSP Concepts Audio Weaver Module User’s Guide

 Page: 160 of 163

MODULE INDEX

Abs 19, 100, 147

Adder 61, 93

AGCAttackRelease 147

AGCCore 143, 149

AGCLimiterCore 20, 140, 145, 152, 153

AGCMultiplier 22, 147

AudioWeighting 144

Biquad 36

BiquadCascade 36

BiquadCascadeHP 38

BiquadNCascade 36, 37

BiquadSmoothed 36

BiqudSmoothedHP 38

BlockConcatenate 60

BlockDelay 60

BlockExtract 60, 113

BlockFlip 60

BlockStatistics 11, 151

BooleanInvert 89

BooleanSource 89

ButterworthFilter 29, 30, 40, 53

ButterworthFilterHP 38

Cfft 56

ClipAsym 61, 100, 154

ClipIndicator 129

ComplexAngle 59

ComplexConjugate 59

ComplexMagnitude 60

ComplexMagSquared 60

ComplexModulate 60

ComplexMultiplier 60

ComplexToPolar 60

ComplexToRealImag 55

Crossover 29, 39, 146, 152, 154

Db20 147, 153

DCSource 84, 132

Deinterleave 60, 94, 121, 137

DelayMsec 140

Demultiplexor 61

Derivative 154

Divide 94

Downsampler 110

EmphasisFilter 31

Fft 56

FIR 7, 36

FIRDecimator 110

DSP Concepts Audio Weaver Module User’s Guide

 Page: 161 of 163

FIRInterpolator 110, 142

GraphicEQ 32

GraphicEQBand 32

GraphicEQBandHP 38

Ifft 56

ImpulseMsecSource 132, 156

ImpulseSource 132

Interleave 61, 121, 156

Invert 61, 81

LogicAll 89

LogicAny 89

LogicBinaryOp 89

LogicCompare 90

LogicConstCompare 90

Marker 117

MaxAbs 19, 22, 140, 147

Meter 128

Mixer 61

MixerDense 61

Multiplexor 61, 116

MultiplexorFade 117

MultiplexorFadeControl 90

Multiplier 94

Multiplier 150

MuteNSmoothed 82

MuteSmoothed 61, 81

NullSink 123, 126

Oscillator 133

OverlapAdd 58

ParamGet 92

ParamSet 34, 92

PeriodicSource 132

PinkFilter 32

PinkNoise 133

PolarToComplex 60

Polynomial 100

PulseGen 132

Randi 132

RealImagToComplex 55

Rebuffer 58, 111, 113, 128

Reciprocal 94

RepWinOverlap 59

RMS 90, 154

Router 122

RouterSmoothed 122, 125

Sawtooth 132

SbAttackRelease 76

SbComplexFIR 77

SbDerivative 77

SbNLMS 77

SbRMS 77

SbSmooth 77

DSP Concepts Audio Weaver Module User’s Guide

 Page: 162 of 163

SbSOF 77

SbSplitter 77

ScaleOffset 61, 81

Scaler 61, 80

ScalerControl 61, 81

ScalerDB 61, 80

ScalerDBControl 61, 81, 84

ScalerDBSmoothed 80

ScalerN 80

ScalerNDBSmoothed 80

ScalerNSmoothed 80

ScalerSmoothed 12, 80

ScalerV2 150

SecondOrderFilterCascade 139

SecondOrderFilterHP 39

SecondOrderFilterSmoothed 42, 152

SecondOrderFilterSmoothedCascade 53

ShiftSamples 61

SineGen 131

SineSmoothedGen 131

Sink 87, 126

SOFCascadeHP 39

SOFControl 84, 153

SOFControlHP 38

SoftClip 100, 145

SoloMute 82

Source 132

Square 100

SubblockStatistics 149

Subtract 61, 94, 148

SumDiff 61, 137

TableInterp 12, 34, 84, 100, 148

ThreeBandToneControl 32

TwoPieceInterp 100, 147

Undb20 147

Upsampler 109

VolumeControl 34

VolumeControlHP 39

WeightingFilter 28

WhiteNoise 61, 133

Window 58

WindowAlias 58

WindowOverlap 58

WOLAAnalysis 63

WOLASynthesis 63

XoverNway 39, 146, 152, 154

ZeroPad 59

DSP Concepts Audio Weaver Module User’s Guide

 Page: 163 of 163

	Introduction
	How to use this guide
	Other Audio Weaver Documents
	Module Library Organization
	Module Browser overview

	Basic Module Concepts
	Viewing Module Properties
	Tunable Variables and Inspectors
	Step Values and Fine Controls
	Viewing Module Variables on Canvas
	Module Status
	Wires and Control Signals
	Pin propagation
	Feedback Wires

	Block Size
	Smoothed modules

	Modules in Browser Order
	Annotation
	Documenting Layouts

	Delays
	Allpass Delays
	Modulated Delays
	Delay Taps
	Low memory delays
	Table of Delay Modules

	DSP Concepts IP
	Long FIR Filter
	WOLA Forward Filterbank (Analysis)
	WOLA Inverse Filterbank (Synthesis)

	Dynamics
	Compressors
	Envelope Modulation
	Limiters
	Downward Expander
	AGC Core
	Table of Dynamics Modules

	Filters
	Adaptive (LMS)
	Filters with Calculated Coeffs
	Allpass Pair
	Audio Weighting Filters
	Crossover Filter
	Emphasis Filter
	Graphic EQs
	Hilbert
	Pink Filter
	Three Band Tone Control

	Controllable Filters
	First Order Filter Control
	LPF Control
	Second Order Filter Control

	Filters with Raw Coeffs
	High Precision Filters
	Common Filter Modules
	ButterworthFilter
	SecondOrderFilterSmoothed
	Second Order Filter Smoothed Cascade

	Table of Filter Modules

	Frequency Domain
	Frequency Domain Modules
	Complex Data Support
	Transform Modules
	Windowing
	Complex Math

	FilterBank Processing
	Introduction
	Using WOLA and sub-band Blocks
	Theory
	Aliasing Performance of the WOLA Filterbanks
	Subband Signal Manipulation
	Synthesis Filterbank

	Gains
	Mutes
	Crossfader
	General Purpose Scalers
	Table of Mute Modules
	Table of Gain Modules

	Logic
	Control Signals and Boolean Logic
	Boolean Signals
	ParamSet and ParamGet

	Math
	Advanced Math
	Basic Math
	DB Conversion
	Lookup Tables
	Nonlinearities
	Trig

	Misc
	Biquad Loading
	Block Counter
	Coeff Table
	Counter
	Cycle Burner
	FIRLoading
	GPIO
	Math Exception
	Measurement
	Param Get
	Param Set
	Safety Clip
	Sample Rate
	Set Wire Properties
	Status Set
	Update Sample Rate

	Mixers
	MixerV3
	SMixer2x1
	Wet Dry

	Multirate
	Multirate Processing
	Single block time processing
	Multiple block time processing

	Signal Management
	Signal Routing
	Multiplexors
	Marker
	Interleave/Deinterleave
	Router

	Sinks
	Null Sink
	Sink
	Meter

	Spatial
	Statistics
	Subsystem
	Sources

	Larger Examples
	Speaker Spreader
	Loudspeaker Processing - Stereo
	Oversampling Peak Detection
	Automatic Gain Control
	Simple AGC
	Perceptual AGC
	Two Stage AGC
	Three Stage AGC
	Multiband AGC
	Discrete Dynamics Processors
	Computationally Efficient Dynamics Processors

	Microphone De-essing
	Broadband De-Essing
	Split Band De-Essing
	Dynamic Equalizing De-Essing

	Microphone De-Popper
	Feedback Example

	Module Index

