DSP Concepts Audio Weaver Module User’s Guide

DSP»)

AUDIO WEAVER
MODULE USER’S GUIDE

]

Qs b O —
> + > > = o >] o N
= P o > Om
Volume1 ClipIndicator1 BlockConcat1 = BufferDown1 Sine1
[VolumeControl] [ClipIndicator] [BlockConcatenate] [BufferDown] [SineSmoothedGen]

Deint1
[Deinterleave]

N 1 .
ype
A gl » B> e B B> Iﬂ:ﬂ& o

<
~ 7
Delay1 M1 ZeroSourcel TypeConversioni Scalert SampleStatistics1
[Delay] [Marker] [ZeroSource] [TypeConversion] [ScalerVv2] [SampleStatistics]
[ind 1o ==
+ =
>mﬁzp > > FES (P >
- -
SumDiff1 Tablelnterp1 Meter1 SubSys1 PinkNoise1 Add1
[SumDiff] [Tablelnterp] [Meter] [Subsystem] [PinkNoise] [Adder]
binReal Z_ outRealpy
b o = (X P S o 90
inmag ouflmag
g -90 [+
Mult1 SOFCascadeHP1 Mute1 Upsampleri
[Multiplier\i2] [SOFCascadeHP] [MuteNSmoothed] [Upsampler] T
ibe
[Hilbert]

(October 2016)

AL

AT WEAVER Page: 1of 163

DSP Concepts Audio Weaver Module User’s Guide

Copyright Information

© 2016-2017 DSP Concepts, Inc., ALL RIGHTS RESERVED. This document may not be reproduced in any form
without prior, express written consent from DSP Concepts, Inc.

Disclaimer

DSP Concepts, Inc. reserves the right to change this product without prior notice. Information furnished by DSP
Concepts is believed to be accurate and reliable. However, no responsibility is assumed by DSP Concepts for its
use; or for any infringement of patents or other rights of third parties which may result from its use. No license is
granted by implication or otherwise under the patent rights of DSP Concepts, Inc.

AL

UG WEAVER

Page: 2 of 163

DSP Concepts Audio Weaver Module User’s Guide

TABLE OF CONTENTS

INEFOAUCTION ...ttt ettt et b et e b et e bt e bt e e bt e e b e e e bt e e sae e e bt e e shbe e ne e e sabeeambeesabeeneeesabeesaseesaneennneesas 5
HOW £0 USE thiS BUIAE ..eeiieiiiie it ceees ettt e et e e st e e e et e e e e tta e e e s ataeeeasesaeesaasaeeesnssaeeassseesassseeessseeeasnseeenanns 5
Other AUTIO WEaVer DOCUMENTS.....c..tiierieriteriteritett ettt sttt et e et e e st e saeesbeesbtesbe e et eaeeeseesseesne e b e e resanesanesanenrnes 5
Module LIbrary Organizationccccueiiiciiee e eeciee e et e e e st e e e e rte e e esttaeeestaeeeaataeesaasaeeessseseanssssesasssssesasseesasssenenanns 5
MOAUIE BrOWSEE OVEIVIEWeueiiiiiiiiiieeiteeeite et ettt e sttt e et e st e e s aeeesabeeeabeesabeesabeesabeeeaseesabeeeabeesabeeeabeesabeeeaseesabeeenneesares 6

BaSIC MOTUIE CONCEPES. . .eeeiiiiitieette ettt ettt ettt ettt e bt e be e e bt e s bt e e bt e e sbe e e bt e e abe e e bt e e sabeeeaeeesabeesneeesabeesaseesaseennneesas 7
ViIEeWING MOAUIE PrOPEITIESceeiiiiiiieite ettt ettt ettt ettt ettt ettt e bt e s bt e e bt e sate s bt e e bbe e bt e e sabesbeeebeeebeeenneeenneees 7
Tunable Variables and INSPECLOIS........iiiicieie et ettt et e et e e et e e e e taee e staeeeesstaeesessaeesssaaeaastseeeassseesasseseanssenananes 8
N TRV [T =I Yo o W T o Yo 00 o1 d o SRR 8
Viewing Module Variables 0N CAnVas.........cccueeeeiiiie e ciiee et e ertee e st e e e et e e e setaaeeesbaeeeestaeesessaaeessseaessssasesassees 8
IMIOAUIE SEATUS ...ttt ettt et et s h e b e b et e et e s et e sb e e s b e e s bt e bt eabeeae e e bt e eb e e b e eabeeabesabesanesbeenbeenbeenseenes 9
Wires and CONTIOl SIBNAIS ...coouviiiiiiiieeee ettt et e s et e s bt e s ae e s bt e bt e e bt e e sabe e bt e e sbbe s bt e essneeneeas 9
2] ool QY2 SRS UPRP 11
Y 0o o4 aT=To I a o Yo (1] L= PSP 12

MOAUIES IN BrOWSEI OFOEN «...eiiiieiiiieiiieetee ettt sttt ettt ettt ee s b e e s beesab e e e sbbe s be s e sbaesabesenbaesnesesnneenneees 13
YT Lo] = T o PP PP 13
L] = 1Y PRSPPI 14
DISP CONCEPES P et e 16
(1Y =T oYL PP PTPUPPPRIN 17
FIIEEIS ettt ettt a et e ae e r e r et re s sene s 25
[E=To [UT=TaTor VN To T oo - 11 SN 55
LT 11 OO PPT PP 79
0 = o 84
Yo o TSP PSPV PRR PP 93
] oS 102

UG WEAVER

Page: 3 of 163

DSP Concepts Audio Weaver Module User’s Guide

DT PO P PP 107
IVIUTEIF@EE .ttt ettt ettt et e bt e b e e bt e bt e e bt e bt e e b et e aeesabe e e beeeabe e e bee e be e e st e eabeeesbesneeennneeareean 109
YT ={ g Y T =T =T 4 V=T o SRS 115
SIS ettt e e bRttt e a et e ae e b et R e e Rt e Rt e Rt s RRe s he e nR e e Rt e Rt e ae e e he e h e e Rt e b e e anesanesanes 126
K] o X= L = 1SS 130
] ¥ L] AL PP P PSP PP PPPRPPPRN 130
SUDBDISYSTEIM L.ttt ettt et e b et e bt e b et e bt e bt e e b et e e b et e bt e e sh R e e eh et e shbeeehe e e sabeeehbeesabeeeabeesareennreena 131
Yo 10 ol PO PP P PP OPPPPPTRT 131
[T T g =Y 0] o] =T OSSPSR 136
Y oJeE L T Y o == o L= SRS 136
LOUASPEAKET PrOCESSING = STEIEOuviieeiiiiie ettt ettt e ettt e e et e e e e rtte e e e s tte e e eeateeestseeeesstaeeeasssaeesssseeeanstaeesansseeessreeann 138
OVErsampPling PEAK DETECTION.......uviiiciiee e ctiee e ettt e ettt e sttt e e e st e e eetae e e stbeeeesateeeeeaseaeesbbaeaesateseeanssaeessseaeanssaeananes 142
AULOMALIC GAIN CONTION .nitiiiieeetie ettt ettt et e st e st esa b e st e e sabeesabeesabeesaseesabeesaseesabeesaneesas 144
MICTOPINONE DE-ESSING . veeeutieitititie ettt ettt ettt ettt s bt e e bt e bt e s bt e e bee e bt e e beeeabeesbaesabeeesbeesbeeessbesbeeesbeeseeennseeneeas 153
MICTOPINONE DE-POPPEL ..eiutieeuiitiiteeiee et ettt ettt ettt e stte ettt e sbee e bt e e sbte s bee e beesabe e e baesabeeebeeebeeessbesbeeesseeeseeennneeneeas 156
L TTe | ool S o= 4 o 1 PP PUUPRN 157
/oo [0 T g Lo [G TP P P PO PR PPPTPPN 160

AL

UG WEAVER

Page: 4 of 163

DSP Concepts Audio Weaver Module User’s Guide

INTRODUCTION

This document is an overview of the audio modules included in Audio Weaver. It is intended for training users how
to get the most out of the module library by providing a high-level overview with in depth examples of the
modules. Modules build up sophisticated audio functions and systems in a matter of clicks, similar to circuit design
or using lego blocks. Further information is available in the detailed HTML documentation provided with the Audio
Weaver installer. For more information about a specific module, run Audio Weaver Designer and right click a
module to view its “Help” file.

HOW TO USE THIS GUIDE

This guide is separated into sections as outlined in the table of contents: Chapter 2 starts us off with basic
module concepts. It also discusses designer workflow including the module properties window and adjusting
parameters. Chapter 3 explains each module folder in the browser, as well as how to pick the correct
module as many of the modules are similar. To be clear about the differences between the modules, the
end of each section in Chapter 3 includes a table that summarizes the differences between the modules in
that folder. Chapter 4 provides in depth examples of common processing techniques and algorithms so the
user can have a taste of the capabilities of Audio Weaver. Usage tips are bolded throughout this guide for
ease of reference.

OTHER AUDIO WEAVER DOCUMENTS

This document describes the Audio Weaver modules and module library. The MATLAB scripting interface is
described in Audio Weaver Matlab API. Read more about the graphical designer in Audio Weaver Designer
User’s Guide.

MODULE LIBRARY ORGANIZATION

Audio samples are represented as 32-bit values. Several different data types are available:
Float32 — standard 32-bit floating-point with 1 sign bit, 8 exponent bits, and 23 mantissa bits.
Int32 — Standard twos complement 32-bit integer. The signed values are in the range [-23!, +(231-1)].

Fract32 — Fractional representation where values are scaled in the range [-1 +1). This is standard integer
representation with an implied scale factor of 231

AL

AUCHD WEAVER

Page: 5 of 163

DSP Concepts

Audioweaver Designer - NewSystem.awd -

-

el

Audio Weaver Module User’'s Guide

At the top of the module browser,
there is a checkbox to filter based on

File Edit View Layout Tools Inspector Help

e 200 ¢
Search: Searc/

452 found

®a@Qqal

2

[¥] float [¥] fract32 [¥] int
T

-~

! | Annotation

!. | Delays

} | DS concepts P
!_ | Dynamics

)| Effects

! | Fitters

! | Frequency Domain
! | Gains

! | Logic

the different module data types (see
left). This will filter out modules for
; hardware that operates on specific
NewSyst sample data type (fract32 for fixed-
point). The integer module libraries
are typically used for control
operations and work on both fixed-
point and floating-point targets. The
type convert module allows any data
type to transfer into the others. This
. may be destructive if converting to a
.)
ocksice. 22

Sample Rate: 43000
Data Type: fract32

type with lower resolution.

MODULE BROWSER OVERVIEW

Audio Weaver modules are organized into separate browser folders based on their function. The folders are

arranged in alphabetical order titled with a short description of the contents. A search bar can be found

directly above the browser window. To use the search bar, type the name or some common tag for the

wanted module and press enter.

AL

UG WEAVER

Page: 6 of 163

DSP Concepts Audio Weaver Module User’s Guide

BASIC MODULE CONCEPTS

Audio Weaver Designer has two modes: Design mode and Tuning mode. In Design mode, design signal flow: by

adding modules, making connections, and setting parameters. Tuning mode occurs when the designed layout is
run. The layout can only be run if all modules have valid connections. Run the layout by clicking the play button
at the top or by right clicking the canvas and selecting “Build and Run.” Tuning mode allows for parameter

changes only: no changes to the wiring or structure of the block diagram.
VIEWING MODULE PROPERTIES

An audio module gets instantiated when dragged to the canvas from
the Module Browser, located on the left hand side of the canvas.
Module arguments can only be changed in Design mode and affect
memory allocation, pins, and wiring. Module variables are tunable
parameters which can be changed in either mode. Arguments tend to
define memory allocation for the module, which can’t be changed
during runtime. For example, in an FIR filter, the length of the filter
(number of taps) is specified as an argument. This length affects
memory allocation and as a result setting these arguments is only
allowed in Design mode. The FIR coefficients (a variable) can change at
any time.

After a module is instantiated, change its arguments and variables by
right-clicking and selecting “View Properties” (see right) which will
open up the properties manager at the bottom (see below).

.

View Properties

Inspector

Runtime Status 3
Flip Block

Cut Ctrl+X
Copy Ctrl+C
Delete Del
Paste Settings

Permissions 3
Edit module m-file

Edit module XML

Help

[Module: Frra

[] Expose symbol

| amay: caeffs | arqumants | Praperties | Buid |

[Load from ﬁle...] [Save to file...

Min

Max

Step Description
Fitter coefficient array in normal order.

[P RN Y R N

cooocoooo -

In the Matlab code for an FIR module, the module properties maps directly to the function arguments:

M=fir_module(NAME, L)

AL

AUCHD WEAVER

Page: 7 of 163

DSP Concepts Audio Weaver Module User’s Guide

TUNABLE VARIABLES AND INSPECTORS

Most modules also have an associated Inspector. The inspector allows changing of = =

coeffs

the module’s tunable parameters. Inspectors can be used in Design mode and
Tuning mode by double-clicking on a module, or by right-clicking and selecting

“Inspector.” The inspector for an FIR filter holds the filter coefficients (see right).

m

These parameters can also be changed under the “Variables” tab in the module

properties window.

Save a set of inspectors for later by using inspector groups. Usually, many

inspectors are shown at the same time. To use an inspector group, click ‘Inspector’

on the top menu of Designer. Here inspector group names are managed. The 2

clololojololo|olo|o|o|a|w

inspector group will save the inspector configuration, including positioning. To
reposition an inspector group, simply adjust the inspectors and save the group
again with the same name.

STEP VALUES AND FINE CONTROLS

Within the properties window, in the variables tab, many modules will have range attributes, with an
optional ‘step’ to determine adjustable resolution for the slider or knob control. The Max and Min values
determine the allowable tuning range, and can be adjusted at any time.

Fine controls of the tuning interface relies on a hotkey and click combination. Press and hold ctrl and scroll
the mouse wheel on the knob/slider to use fine tuning. For coarse tuning, hold shift and do the same. For
adjusting with mouse clicks, the tuning is controlled by distancing the cursor away from the knob while
tuning. This will allow for smaller changes to occur, as more distance is needed to create the angle.

VIEWING MODULE VARIABLES ON CANVAS

A useful design feature is to see variable values without
having to open all of the inspectors. The original design

appears as: L& BN

SOFT
[SecondOrderFiterSmoothed]

Muxt
[Muftiplexor Smocthed]

To show variable values, select “Module Variables” under the e
View menu. With variables shown, it appears as: Lﬂ

SOF1
[SecandOrderFilterSmoothed] Mux1
w Shelf [MultiplexorSmeothed]
freq = 250 Hz indesc: 1
gain = 5.7 dB smoothingTime: 15 msec

Page: 8 of 163

DSP Concepts Audio Weaver Module User’s Guide

MODULE STATUS

Each module has an associated runtime status with 4 possible values:

Active —The module's processing function is being called. This is the default behavior when a module is
first instantiated.

Muted — The module's processing function is not called. Instead, all of the output wires attached to the
module are filled with zeros.

Bypassed —The module's processing function is not called. Instead, the module's input wires are copied
directly to its output wires. Some modules use an intelligent generic algorithm which attempts to
match up input and output wires of the same size. Other modules implement custom bypass
functions.

Inactive —The module's processing function is not called and the output wire is untouched. This mode is
used almost exclusively for debugging and the output wire is left in an indeterminate state. Use
with caution!

Changing the module status is useful for debugging and making

RNEL |
Y
il

simple changes to the processing at run-time. The module status can = E A — _

be changed in both Design mode and Tuning mode. T Runtime Stetus vV acte
?ﬂi:ila Fiip Block Muted

The Module Status can be changed by right-clicking on a module Piot Frequency Response Bypass

and selecting “Module Status =”. To change the module status of a o o [t

group, select multiple modules(including subsystems) with drag and :,GE cm;: '

select or by pressing ctrl, and right-click to change the status of all r——

selected modules.
WIRES AND CONTROL SIGNALS

Connections between audio modules are called wires and correspond to buffers of data on the target. A
wire has the following properties:

-number of channels

-block size

-sample rate

-complexity (real or complex values).

Most modules can operate on an arbitrary number of channels, block size, and sample rate. The number
of channels and block size of a wire is called its size. Show wire properties using the View—>Wire Types
menu item.

Page: 9 of 163

DSP Concepts Audio Weaver Module User’s Guide

| PIN PROPAGATION

Wire information is resolved through a process known as pin propagation. The wire information is
known from the system input and this information is propagated in module order until it reaches the

o
system output pin. To trigger pin propagation, click on the Propagate changes button (EEEE)on
the toolbar. Alternatively, right-click on an empty part of the canvas and select “Redraw” from the
context menu. If there is a wiring error and pin propagation is unable to complete, an error sound
will play. To find out more details to this error, run the system.

FEEDBACK WIRES

Feedback occurs when a wire is routed

backwards to an input earlier in the

system. Feedback wires must be

manually specified®. To make a mod Z‘” t;Al—DD

feedback wire, right click a wire and St

select “Feedback”. The wire will turn @f it ety
maxDelay: 100 samples smoothingTime: 10 msec

blue to indicate that it is a feedback Add1 imterpTypei0 i=D8: 1
[Akder] currentDelay: 0 s=amples

. . =ChannelOutout: | nodDepth: 0 samples
wire. For each marked feedback wire, oneChannelOutput: 0 1 o

Audio Weaver will create a dedicated
buffer to store its data. At system
startup, data in the wire is initialized to all zeros.

If a feedback wire is left unmarked, the following error

will appear after an attempt to build the system: o e e ==
*Routing error. No medule can fire. Are you missing feedback?!’

To solve this, locate the feedback point in the block

diagram and then mark the feedback wire.

1 The manual specification of feedback wires is a limitation of the way that Audio Weaver resolves wiring
information. Recall that Audio Weaver starts at the input of the system and then propagates wire size information
module-by-module. When it first reaches a feedback point, it will have not yet resolved the size information for
that wire and cannot proceed further. As a result, wires must be manually marked as feedback.

AL

UG WEAVER

Page: 10 of 163

DSP Concepts Audio Weaver Module User’s Guide

Wire size information must be set using the
“Feedback Properties” dialog which is reached by
right-clicking on the feedback wire. The following
dialogue box opens, allowing the ability to set the
wire’s block size, number of channels, sample
rate, data type, and whether or not it is complex.
This should match the pins that the wire is
connecting.

BLOCK SIZE

Each hardware target has a fundamental block size to
specify how many samples per block are handled by the
real-time audio 1/O functions. This is shown on the Server
window when the Server launches. (see right)

Layouts can use any multiple of the target’s fundamental
blockSize. Change blockSize at any time by adjusting the
hardware input parameters in SYS_in. BlockSize
information is propagated from the input pin, through the
modules, to the output pin. The blockSize of the output
pin is set by pin propagation?.

Interpolator and decimator modules increase or decrease
the blockSize. Some modules also output a single value
control signal (blockSize = 1). For example, the
BlockStatistics module can be configured to output the
average value of a block of samples. This data will be one
value per block. Control signals are drawn with dashed lines
instead of solid lines.

Feedback Wire Properties

blockSize

numChannels

sampleRate

dataType

isComplex

Inhert from first input pin

Inherit from first input pin

Inherit from first input pin

Inherit from first input pin

Inherit from first input pin

Inherit

Inherit

Inherit

Inherit

Inherit

Cancel

0K

i Warver Sm

rver - Target = Native

Fle Target Flash Audio Help

i
L

CPU -—%

Fast Heap [0 of 10240000 words)

Fast Heap B [0 of 10240000 words)

Slow Heap (0 of 4194304 words)

Name: Native

Yersion: 1.0.0.4
Processor type: Native
Profile clock rate: 10 MHz
Sample rate: 48000 Hz
Basic block size: 32 samples'<:=
Supports object ID addressing: Yes

Supports SctlD: Yes

Supports scifget merge: Yes
Communication buffer size: 264 words
Is floating point: Yos

Is FLASH supported: Yes

Size of 'int'; 4

Number of inputs:

Number of outputs: 2

Output | Messages | Errors |

Target Information

2 The exact behavior is controlled by the checkbox “Validate system output pin” in Layout->Layout Properties
dialog. There is the option of inheriting the output pin size from the wire attached to it (Validate system output
pin unchecked; this is the default). Or force the wire to match the output pin (Validate system output pin checked.)

Page: 11 of 163

DSP Concepts

Audio Weaver Module User’'s Guide

In the example below, the BlockStatistics1 module computes the RMS level of the signal and a lookup table

(Tablelnterp1) turns this into a linear gain to be applied by Scalerl. The signals into and out of the lookup

table module are control signals.

Data Type: fract3z2

P Type
Convert
SYS_in
Channels: 2
BlockSize: 32 SY3_toFloat

. [TypeConversion]
Sample Rate: 43000 fract3Z —» fioat

BlockStatistics1
[BlockStatistics]
statistics Type: Maximum [0]

[Marker]

=gl

Tablelnterp1
[Tablelnterp]

gain

Linear
4 put of & points.

--- T

Scalert
[Scalerv2]
gain: 0 linear
smocthingTime: 10 meec
i=DB: 0

Type
Convert

T

SYS_out

S%'S_toFract

Channels: 2
BlockSize: 32

[TypeConversion] o i Rate: 45000

float — fract3z

Data Type: fract32

SMOOTHED MODULES

Some modules have built in smoothing to prevent pops and clicks during tuning. Smoothing is implemented

using a first order IIR filter:

gn=1—agn—1+at[n]

where g[n] is the instantaneous smoothed gain and t[n] is the discontinuous target gain. The coefficient a

controls the smoothing process and depends upon the smoothingTime and the sampling rate. Smoothed

modules take additional processing: only use these when tuning is needed during runtime.

The figure below shows a ScalerSmoothed module with a 10 msec time constant. The blue line is the

instantaneous gain change from 1.0 to 2.0 and the red curve is the result of smoothing.

Time constants correspond to the familiar definition of time constants used in analog filters:

gt=e—t/t

Where 7 is the time constant. After 1 time constant has elapsed the gain has decayed by e™! = 0.3679.

After 3 time constants, the gain has decayed by 95%, because e—3=0.0498. Thus, it takes several time

constants for the gain change to fully take effect and this is reflected in the figure above.

AL

UG WEAVER

Page: 12 of 163

DSP Concepts Audio Weaver Module User’s Guide

MODULES IN BROWSER ORDER

Audio Weaver has over 400 different types of modules available. This section organizes the modules into standard
types with brief descriptions of each. Our focus will be on how to use the modules, with information provided in
tables to determine the differences between similar modules.

ANNOTATION

In order to keep notes within layouts, Designer supports text boxes, rectangle panels, and arrows. While there are
many ways to use these, the standard is to break the layout file into “processing sections” with information on
how to tune the design. Annotation is also good for keeping “presets” or “modes” written down on the canvas.

Control values from

user interface
B — - — - Wolume1
T
[

VolumeKnob
[DCSource]

FanSpeed ComputeSNR

|

|

I [DCSource]
| [DCSource] [Subsystem]
|

Iy
M2
[Marker]

DOCUMENTING LAYOUTS

To use the annotations, drag them onto the browser. Rescale - =
them and position them accordingly. To edit a text box, double m”uf;?eﬁ
click it and type away on the canvas. To change text size or [Jﬁ%ﬂiﬁ?ﬂm EUR RN
annotation color/width, check the properties panel for each smoothingTie: 10 msec

fadeTime: 10 msec

annotation. In order to keep a standard across the design file, it is
recommended to establish a standard annotation (i.e. get the

. . Double click to set this to

fonts/size/color set up) and copy/paste this to keep the style show unweighted(top pin)

throughout the annotations. and weighted(bottom pin)
signal.

Page: 13 of 163

DSP Concepts Audio Weaver Module User’s Guide

DELAYS

Delay modules hold the input signal for some amount of time using an internal circular buffer. This buffer is
instantiated with a size maxDelay. At runtime, currentDelay is set to control the time constant for the maxDelay
buffer. Most delays update currentDelay instantaneously, but smoothed(interpolated) delays are provided if the
final product needs a varying delay.

Delay time type can be int or fract32 samples, int or fract32 milliseconds, or blocks. Input type also varies, meaning
some modules take Float audio data, some take Fract32 audio, and some take any type (including int).

For most cases, use Delay msec or Delay samples. Modulated delays come into play for making musical effects.

ALLPASS DELAYS

Allpass Delays use feedback and feedforward in order to vary the phase of a signal without changing its magnitude
or its position in time. Our allpass delays have a coef variable which determines the amount of gain on the
feedback/forward mix factor. Allpasses are commonly used in audio effects like chorus, flanger, reverb, and stereo
effects. Our allpasses also have the option of outputting the delayed signal (in cases where time position and
phase should change).

MODULATED DELAYS

Modulated Delays come with a modulation control pin. This control pin feeds the modulation factor mod, limited
in depth by modDepth. A common use case is to provide the mod pin with a random or oscillator source that varies
from -1 to 1, allowing the delay to vary. This oscillation reduces harmonic artifacts from feedback delay lines.

DELAY TAPS

Delay Taps create an evenly spaced N amount of delays, which are all interleaved into separate ‘delay channels.’
This is useful for adaptive FIR filters and prediction algorithms due to the consistency in delay length.

LOW MEMORY DELAYS

Since delays tend to be memory intensive, memory efficient options are provided. Modules labelled with a 16 in
the name use half of the bits (compared to 32 bit data). This results in about half the size on the heap, at a cost of
lost amplitude resolution. Our most memory efficient delay for multiple lines is the Delay State Writer16. This uses
a circular buffer and multiple pointers instead of multiple buffers in memory, all while using 16-bit resolution.

AL

UG WEAVER

Page: 14 of 163

DSP Concepts Audio Weaver Module User’s Guide

|TABLE OF DELAY MODULES

Module Name Input type Delay Time Type Time Interpolation Modulation Control Delay Tap Low Mem
Allpass Delay Floating point Integer Samples (none) (none) (none) (none)
Allpass Delay Fract32 Fract32 Integer Samples (none) (none) (none) (none)
Allpass Delayl6 Floating point Integer Samples (none) (none) (none) yes
Allpass Delayl6 Fract32 Fract32 Integer Samples (none) (none) (none) yes
Allpass Delayci Floating point Fractional Samples Cubic yes (none) (none)
Allpass Delayi Floating point Fractional Samples Linear yes (none) (none)
Block Delay Any Blocks (none) (none) (none) (none)
Delay Any Integer Samples (none) (none) (none) (none)
Delay Interp Fract32 Fract32 Fractional Samples Linear and Cubic |yes (none) (none)
Delay Msec Any Fractional Milliseconds (none) (none) (none) (none)
Delay Ntap Any Integer Samples (none) (none) yes (none)
Delay NTapl16 Fract32 Fract32 Integer Samples (none) (none) yes yes
Delay Reader Integer Fractional Samples (none) (none) (none) (none)
Delay State Writer Any Integer Samples (none) (none) (none) (none)
Delay State Writer16 Any Integer Samples (none) (none) (none) yes
Delay16 Any Integer Samples (none) (none) (none) yes
Delayci Floating point Fractional Samples Cubic yes (none) (none)
Delayci Fract32 Fract32 Fractional Samples (none) (none) (none) (none)
Delayi Floating point Fractional Samples Linear yes (none) (none)
Fractional Delay Fract32 Fract32 Fractional Samples (none) (none) yes (none)
Interpolated Delay Floating point Fractional Samples Linear and Cubic |yes (none) (none)

AL

UG WEAVER

Page: 15 of 163

DSP Concepts

DSP CONCEPTS IP

Audio Weaver Module User’'s Guide

LONG FIR FILTER

This zero latency FIR allows for large FIR filters by breaking a large convolution into multiple smaller convolutions.

This module supports one channel of audio, and the blocksize must be a power of two. The larger the blockSize,

the more efficient the processing. It expects time domain FIR coefficients, and will automatically convert these

into the frequency domain for processing. It is recommended to load the coefficients as a text file using the

properties browser to edit the FIR array, rather than typing them in by hand.

|WOLA FORWARD FILTERBANK (ANALYSIS)

Block of amplitude samples overtime ->

[OOO000000000F—>pt forwerd

(blocksize of system)

This module is used to convert a time domain(real number) signal
into frequency domain(complex number) bins. The output of this
module will operate according to this blocksize. From this point on,
the data is complex. See the Frequency Domain folder for modules
that operate within the complex domain. The first and last bin
represent DC, and have no complex data.

WOLA
>{[]
(Analysis)]
>
(&)
§ % blocksize=%—1
o
20
o [
3 |0
= |
]
(]

|WOLA INVERSE FILTERBANK (SYNTHESIS)

Frequency Domain section.

Block of Frequency Bins
UOO0O000000000

S

WoLA
Inverse
Fiterbank
(Synthesis)

=

This module will convert a block of frequency bin(complex number) data into the time
domain(real number). This is normally paired with WOLA Forward Filterbank (Analysis). Be sure
to keep the WOLA Forward and Inverse sizes the same. More information is provided in the

WOLA,, = 2 = (blocksize + 1)

Block of amplitude samples overtime ->

—so0oooOoooan]

(blocksize of system)

AL

UG WEAVER

Page: 16 of 163

DSP Concepts Audio Weaver Module User’s Guide

DYNAMICS

Dynamic modules de/emphasize the amplitude structure of data. AGC stands for Automatic Gain Control. It differs
from standard gain modules in that the gain value changes by itself over time, and the gain can scale loud volumes
separate from quiet volumes. This ‘warping’ of the volume information can regulate perceived volume, maximize
output, add a safety stage before the signal hits the speakers, remove low volume noise, and manage sound
source priority like ducking music behind a dialog track. This section of the guide will cover the modules in the AGC
folder: compressor core, envelope followers, limiter core, expander(and noise gate), ducker, and agc core. It will
then go over building a custom AGC, and finally optimize an AGC to run at reduced computation cycles.

The dynamics modules operate with different gain variation speeds and different magnitude reference signals. All
dynamics modules with the suffix ***Core do
not generate audio data, but instead output

volume data to be sent to a scaler control pin or Output Level (dB)
an AGC Multiplier. The following diagrams Slope<1
represent the typical input/output response for

various AGC types.

Compressor — reduce the peak dynamic range

of a signal
} Input Level {dB)
Threshold
Output Level (dB
P (dB) Slope=1
above threshold
Downward expander (and noise gate) — __.-"/
reduce small signal levels and behave as ™ Slope>1
noise gates : “~— Below threshold
| Input Level {dB)
Threshold

AL

UG WEAVER

Page: 17 of 163

DSP Concepts

Limiter — restrict peak signal levels to avoid
digital clipping (limiters generally have a
horizontal or flat slope, which means high
ratio)

Ducker - use a trigger signal to determine
when to boost or reduce gain of another
signal.

AGC Core- adjust the gain to keep the
signal within a specified RMS range

Audio Weaver Module User’'s Guide

QOutput Level (dB)
P Slope = 1 / Ratio

Ratio = Input: Qutput
/ Knee Depth

] Input Level (dB)
Threshold

Gain dB

Trigger On

0dB

ducklLevel Trigger Off

Attack '—Ild—' Release
0

Volume — target RMS
— input RMS
— gain signal
— output level
maxGain S~

maxAttenuation

Recovery (input is under
gthreshold)

~N

Below Threshold

Time

Page: 18 of 163

DSP Concepts Audio Weaver Module User’s Guide

|COMPRESSORS

A compressor reduces the signal’s dynamic range, meaning that it lowers the level of loud signals and boosts quiet
ones, reducing the difference between loud and soft signals. Make-up gain is usually applied after for increasing
the perceived loudness. This can be used for scenarios when keeping the overall volume low is desired but hearing
small details is still important, such as night-time movie

watching. The behavior of the compressor is best

understood by looking at its input-output response: Output Level (dB)

Slope < 1

Above the threshold the compressor reduces the signal
level; below the threshold the compressor increases
the signal level (it’s expanding the system). This brings
all output signals closer to the threshold level and

reduces the overall dynamic range. The] Input Level (dB)
AGCCompressorCore module is wired the same way as Threshold

the limiter module, receiving its input from an Abs or
MaxAbs module and outputting to a multiplier, as
shown below:

Type | | Compressor
Convert = Max Abs [r—T Core [
SY'5_toFloat MaxAbs1 CompressorCore|
[TypeConversion] [Max&bs] [AGCCompressorCore]

AGCMutt!
[AGCMultiplier]

AL

UG WEAVER

Page: 19 of 163

DSP Concepts Audio Weaver Module User’s Guide

| ENVELOPE MODULATION

Envelope modulators control the impact that relative peaks have. The Attack Release module uses
attackTimelnitial and attackTimeFinal to smooth peaks. The Attack Decay Sustain Release is similar, but also
includes 2 stages in between the attack and release. Decay lowers the level into a hold that is based on the sustain
level. After this hold ends, the release occurs.

Signal
Step input
—— Long attack/decay time
—— Short attack/decay time

LIMITERS

The AGCLimiterCore module is parameterized by its threshold, ratio,
gain, knee depth, attack time, and decay time. The AGCLimiterCore Output Level (dB)

__ Slope =1/ Ratio
module computes the time varying gain.

Take / -
the /

Ratio = Input: Output

} Input Level (dB)
Threshold

Core

,lxl Tean} Limiter

LimiterCore

absolute value of the signal so
that the AGCLimiterCore module
treats positive and negative

> el r2 Gl

in[1] out [1]
AGCMult1

signals equally. The first pin on the
AGCMultiplier is the gain to apply and
the second input is the audio signal itself.

(standard arrangement for a mono limiter)

AL

AUCHD WEAVER

Page: 20 of 163

DSP Concepts Audio Weaver Module User’s Guide

When the input is below the threshold the line has a slope of 1 indicating that the signal level is unchanged. Above
the threshold the slope drops indicating that the output level will be reduced compared to the input level. Limiters
have a parameter called the “ratio” referring to the reciprocal slope of the gain ratio above the threshold. A high
ratio provides hard limiting, close to 1 provides gentle limiting.

The limiter applies a piecewise function to determine _
. . - Output Level (dB)

its gain: at a specified threshold, the slope changes. - _ Slope = 1/ Ratio
The transition between sections is smoothed by a
connecting polynomial section, often referred to as yd Ratio = Input: Output
the “knee”. The knee provides a gentle polynomial

interpolation between the threshold and the

Knee Depth

requested slope. The kneeDepth parameter controls

the extent of the polynomial section. The polynomial

starts at threshold-kneeDepth and ends at } Input Level (dB)
threshold+kneeDepth. Threshold

The speed with which a limiter responds to an increase in sound level is described by its “attack time”. The lower
the attack time, the faster the limiter will respond to the sound level rising above its threshold. Similarly, decay (or
release) time describes the speed with which the limiter’s effect is relaxed after the sound level drops back under
its threshold. The time behavior of the dynamics processors is implemented with first order IIR smoothers with
different attack and decay coefficients. The above image shows example attack and decay curves.

DOWNWARD EXPANDER

The DownwardExpanderCore module is also a limiter

with a piecewise gain, but its piecewise function is

different. Whereas most limiters use a slope of 1 Output Level (dB)

Slope=1
below a threshold and a reduced slope above it, this : above threshold
module features a very steep slope below its _
threshold and a slope of 1 above it. Rather than '_:_.,/
reducing the level of loud signals, this reduces the *
level of quiet signals. The D dExpand 7/ Slorer1l
evel of quiet signals. The DownwardExpanderCore ~ Below threshold
module’s response behavior is shown right:

| Input Level (dB)
Threshold

AL

UG WEAVER

Page: 21 of 163

DSP Concepts

Audio Weaver Module User’'s Guide

One use of this module is for filtering out low-level noise while retaining a louder signal.This is very useful for
eliminating “hiss,” low level background noise in a signal. Like most dynamic processing modules, the
DownwardExpanderCore is designed to take its input from the MaxAbs module and output its gain as an input to
the AGCMultiplier module. Shown below is an example of a noise gate which eliminates low level signals.

. TYpe

Convert

SYS_in
Channels: 8
BlockSize: 32

5Y5S_toFloat
Sample Rate: 4g0p0 [YPEConversion]

Data Type: fract32 Fractid — tiost

Max Abs

MaxAbs
[MaxAbs]

DownwardExpanderCore1
[DownwardExpanderCore]

Thresnol: -20 a8
ratio: 5 dB/dB
kneeDepth: 0 dB
attackTime: 20 meec
decayTime: 100 meec

AGCMutt
[AGCMuttiplier]

ot]
Convert F

S5¥S_out
Channels: 2

BlockSize: 32

55 toFract

[TvpeConversion] R
float — fracti? Sample Rate: 43000

Data Type: fract32

AL

UG WEAVER

Page: 22 of 163

DSP Concepts

Audio Weaver Module User’'s Guide

| AGC CORE
AGCCorel =
bl
VOIume — target RMS targetlevel | maxGain R:!:v:ry
. (dB) (dB)
— input RMS = =
o oF R | o R -
— gain signal 30; f;O;'e"é“a";réﬂif
3 % B % 2.4
— -50 500 50
output level e Y
il Attenuati 9 o
maxGain . @) | @ O
10 100 o

maxAttenuation

Recovery (input is under

\ Kthreshold)

Below Threshold—

N\

Time

This module has a slowly varying volume control which transfers the input signal level towards a
targetLevel, a specified RMS level. The input RMS is smoothed via the smoothing time variable. This allows the gain
to change gradually. The gain is limited to the range [-maxAttenuation and maxGain]. The ratio control determines
the speed of the gain change for all signals above the activation Threshold. When the level of the input signal falls
below activationThreshold, the AGCCore holds the last gain setting. If the enableRecovery checkbox is checked,
the gain will slowly return to 0 dB when not activated. The rate of return is governed by recoveryRate.

PR P

BE S LD o o S E =

AL

AUCHD WEAVER

Page: 23 of 163

DSP Concepts

Audio Weaver Module User’'s Guide

|TABLE OF DYNAMICS MODULES

Module Name

AGC Core

AGC Multiplier

AGC Multiplier Fract32
AGCAttack Release Fract32
AGCCompressor Core Fract32
AGCCore Fract32

Attack Decay Sustain Release
Attack Release

Compressor Core

Downward Expander Core
Downward Expander Core Fract32
Ducker

Ducker Fract32

Limiter Core

Limiter Core Fract32

Noise Gate Core

Variable Attack Release

Input type supported Gain Variation Speed Vol. Reference Output Type

Floating Point
Floating Point
Fract32
Fract32
Fract32
Fract32
Floating Point
Floating Point
Floating Point
Floating Point
Fract32
Floating Point
Fract32
Floating Point
Fract32
Floating Point
Floating Point

Slow

Instant

Instant

Variable Controlled
Variable Controlled
Slow

Variable Controlled
Variable Controlled
Variable Controlled
Variable Controlled
Variable Controlled
Variable Controlled
Variable Controlled
Variable Controlled
Variable Controlled
Variable Controlled

Variable Controlled

RMS

Pin Controlled
Pin Controlled
Peak

Peak

RMS

Peak

Peak
Threshold
Threshold
Threshold
Trigger
Trigger

Peak

Peak

RMS Threshold
Peak

Gain Control Data
Audio Data
Audio Data
Audio Data
Audio Data
Gain Control Data
Audio Data
Audio Data
Audio Data
Audio Data
Audio Data
Audio Data
Audio Data
Audio Data
Audio Data
Audio Data
Audio Data

Page: 24 of 163

DSP Concepts Audio Weaver Module User’s Guide

FILTERS

The Audio Weaver Filters folder lists over 60 filters. They have been broken down according to user
needs, with the folder labels Adaptive, Calculated Coeffs, Controllable, High Precision, Raw Coeffs, and list the
most commonly used filters. The Adaptive folder contains the LMS module, an adaptive filter with tracking
capabilities. For those users less experienced with designing filters, the Calculated Coeffs filters take in frequency
information, Q, Gain, and type, similar to tuning a filter in a DAW. Users with more DSP background can use the
Raw Coeffs filters to tune filters with mathematical information. The most frequently used filters are the
ButterworthFilter (highpass, lowpass, allpass), SecondOrderFilterSmoothed, with 20 different filter types, and the
SecondOrderFilterSmoothedCascade: multiple 2nd order filters in series.

ADAPTIVE (LMS)

The LMS filter predicts the FIR of a system whose transfer function is not given. It’s input and output adapt or
“predict” what the system response is. Filter weights are updated over time based on mu speed, higher numbers
being the faster update speed. Higher numtaps give higher chance to converge with the optimum filter
weight(meaning less error). The error can be tracked realtime with the errorSignal output. The module comes with
an option to output the predicted “coeffs”. The following system shows white noise being ran through a 10 point
FIR. The LMS will predict the FIR coefficients, and sinks will display the error and coeff function.

L3
(I
L Output
I=dataln dataCut [Sink]
LMS errer3ignal
=reference .
coeffs [
P — 3
White1 > FR B L1
[WhiteNoise] [LLTE] 2
range: 1 .
FIR1 maxTaps: 32 samples & |:| I;rlrukr
[FIR] numTaps: 10 samples [Sink]
numTaps: 10 samplds mu: 0.08 linear Coefis ==
[Sink] = ==
8 |
== == ——
b == ==
—— - - Error2
—1] L [Keter]
Input AfterFIR meterType: VUNeterBlock [18]
[Meter] [Meter]
meterType: VUNMeterBlock [18] meterType: WUNMeterBlock [13]

Page: 25 of 163

DSP Concepts

This sink shows the coeff prediction.

Audio Weaver Module User’'s Guide

= G| [o|!
The LMS Find:
coeffs L.000 L Overall Control
is trying 1
i Update
to predict|| t 1 05 e — B
2
q [¥] Show Grid
this FIR i 0.8 ~ 1812 overal Control
z 0 15
£ Y Axis Time: w7
response. || s 0.2 -
& 0 1 [#]update
7 0 [Auto Range
s a 0.5 0.5 Show Grid
9 0.3 X Axis = 0
10 0 -1.000 — ,] S ¥ Axis
Il —
Al
1 Index 32 g Auto Range
-1
-L5 X Axis
‘l -2.005 Linear
— 0.1 02 03 04 05 0.6 [Auto Range
dataOut Time (meec) 0.666667 <
dataln dataOut [Sink]
LIS errorSignal
reference
coeffs _l £y @
White1 1 1000 1
T [LL':‘S;] - Overal Control
e maxTaps: 32 samples l:l E‘Sr_rukr
numTaps: 10 samples [Sink] 0.5 Updabe
mu: 0.08 linear TS == -
==
[5ink] == Show Grid
[~
EE == == 3
dataln 2] || ArerR [E] == == e £ 0 ¥ Axis
== == fieer
value[1] value[1] datain ATterFIR meterType: VUMeterBlock [18]
(ds) (dB) [Meter] [Meter] e [Auto Range
-0.235%87 3.95373 meterType: VUMeterBlock (18] meterType: VUMsterBlock [18] Eroz (8] .
10] 10 . ¥ Axis
1 . . value[1] -1.000 Linear
z 0 The Error2 display shows a value of -125 dB, which (cB) | T o2 3 o4 s e
-10 - -10 - e 20 i R " oseeser | [AtoRance
means that our signal is very accurate. The sink to 10
20 - 20 4
0 - o [i]
0l 0l the right displays this as well.
-10
40 -40
-20
-50 -30
-30
-60 60 -
a0
= 50
-60

AL

UG WEAVER

Page: 26 of 163

DSP Concepts Audio Weaver Module User’s Guide

FILTERS WITH CALCULATED COEFFS

Audio Weaver has a several filters with built-in design equations. These filters are implemented using Biquad or
BiquadCascade modules behind the scenes and the filter coefficients are computed by the design equations based
on high-level filter specifications. The design equations use the sample rate on the input wire when computing
coefficients. The following sections describe each of the calculated coeffs modules.

 ALLPASS PAIR

The Allpass Pair module creates a pair of allpass filters with the special property that their sum and difference form
a doubly complementary highpass-lowpass filter pair. When used in conjunction with the Sum and Difference
module (available in the Math folder) this Allpass Pair module can be used to construct more complex structures
such as N-way crossovers and filter banks. The following design mixes one channel of white noise into two “bands”
of white noise using this technique. The sink is an FFT showing the frequency response of the signal.

~0od sinkl (=]
[-
— “”P‘“’”"“@ 0.263 Overal Control
Rebufferl
[Rebuffer] "U“rﬂgeq =
outBlockSize: -10 e = . 7] Update
3 Tl 5 30 7] Show Gri
ScaleOffset! (" L@
Apt i1 [ScaleOffset] o A = a
Allpass Pajr * gain: 10 A = g ¥ Axis
et offset: 0 20 oo | Sk}
vhite1 “AlpassPairt SUmDIff e R: =
White: passPair umDif interieave] 5
[WhiteNoise] [AlipassPair] [SumDiff) =000 (dB) -60 [Auto Range
range: 1 XoverFreq: 122077998 Hz [y 100
Rs: 100 dB — g
® leOffset. e] X Axis
[ScaleOffsef] Rebuffer2 e(" 82515 gy —— =
gain: 10 Rebufrer] o . 5 = = = =
offset 0 outBlockSize: -10 o - — FlAutorange
== Advanced | | 0 Frequency (Hz) 24000

AL

UG WEAVER

Page: 27 of 163

dB

dB

DSP Concepts

Audio Weaver Module User’'s Guide

AUDIO WEIGHTING FILTERS

The AudioWeighting module is located under Filters/Calculated Coeffs This module applies different standard
audio weighting to a signal. The available weightings are selectable from the inspector and include: A, B, C, and D-
weighting, as well as ITU468, LegM, and ITU 1770. The WeightingFilter is used for noise measurements and

broadcast loudness applications. The following frequency responses display each weighting’s filter.

WeightingA
TTITIT T

& =3 T 5
10 10 10 10 10
Frequency (Hz)

WeightingD

Frequency (Hz)

dB

dB

dB

WeightingB

20

10° 10 10°

Frequency (Hz)

WeightingTU468

20F----

30f----

Frequency (Hz)

WeightingITU1770

20 -

25

10

10° 10 10°

Frequency (Hz)

dB

18 i - i

WeightingC

2 =3 T 5
10 10 10 10 10
Frequency (Hz)

WeightingLegM

Frequency (Hz)

AW

AT WEAYE

Page: 28 of 163

DSP Concepts Audio Weaver Module User’s Guide

. CROSSOVER FILTER

A crossover is a special type of filter that splits a signal into multiple bands, while sustaining a total gain of 0 dB. It
will boost the level of one frequency band as the other drops to compensate to 0 dB gain. This behavior is shown
in the figure below.

QOutput Level (dB)

Total signal level

Low-Pass High-Pass

Threshold

Frequency

Crossovers are used in loudspeaker applications to separate signals into different frequency bands to be output via
woofers, mid-range, and tweeter speakers. They are implemented using ButterworthFilter (odd-order) or Linkwtiz-
Riley (even-order) filters. Crossover filters can be made manually using individual filters. By cascading filters and
applying an allpass filter during other lane filter stages (shown below), more crossover points can be added and
the signal split into more frequency bands, while retaining the unity gain property.

Alternatively, use the crossover

module which contains all of the - p—
. Low-Pass 1 II-Pass 2 All-Pass3 —>
needed filters. The Crossover “om l—)—(l—;—(I
Filter module allows the user to s e Buteraicrirter | Buerworaer
. L Order=3 Al Order=3
set the type of filter, number of Low-Pass 2 e = 250 he Trea < 1000 hz

ButterFitter3

ButterFilter2 [ButterworthFiter]

. High-Pass 1
output bands, and filter order, i e
ow-Pass 3 — P 1P &P |
specified in the module’s HishPassz<|: — l—)—(X

properties. Crossovers are used

High-Pass 3—> H[?:“ET\WOWZF‘“E"E Lowpass Order = 3 oneChannelOutput: 0
- - ighpass Urder = =
for separating different frequency Treq - 250 Hz i
bands of a signal. The example l—)_Q_ —
below demonstrates a crossover Bt iterd
. [_HutterwnrtnF\Iter]
module being used to split a signal into a high band above 250 Hz and a low e

Add1
[Adder]

band below 250 Hz. The sum of the levels of the two bands is always 0 dB. As
the input frequency changes near 250 Hz, one channel’s level drops and the
other smoothly increases to compensate to 0 dB.

AL

UG WEAVER

Page: 29 of 163

DSP Concepts

Audio Weaver Module User’'s Guide

@

Sinel
[SineSmoothedGen]
freg: 1000 Hz
smoothingTime: 10 msec
startPhase: 0 degrees

I

=

Lo
Ll

CrossoverFitter!
[CrossoverFiter]
Linkwitz-Riley
0-=250
250 -= SRIZ

meterTy|
Interleave1
[interleave]

Meter1
[Meter]
pe: VUMeterBlock [18]

Add1

0000
LUl

[Adder]
oneChannelDutput: 0

Sum
[Meter]

meterType: VUMeterBlock [18]

This is the same behavior as using two ButterworthFilter filters:

’u >>5um

."
56
= =
L==1

Sined
[SineSmoothedGen)]
freq: 1000 Hz
smoothingTime: 10 msec
startPhase: 0 degrees

T

l—)ic

ButterFitter1
[ButterworthFitter]
Lowpass Order =2
freq =250 Hz

LF KPR AP

VUWeterBlock [18]

l_)?

ButterFifter2
[ButterworthFitter]
Lowpass Order = 2
freq =250 Hz

I R
% d
meterType:
Interleave1
[Interleave]
Add1
[Adder]

oneChannelOutput: 0
meterType:

Sum
[Meter]
VUMeterBlock [18]

The Crossover Filter module allows the configuration of 2 or more output channels. The module will then be

drawn with 3 output pins. The top pin is the low frequency; the center pin is the mid-range, and the bottom pin

is the high frequencies. The inspector shows two cutoff frequencies: between the low and mid-range; and

between the mid-range and high frequencies. For example, if implementing a 3-way loudspeaker crossover,

configure it as:

AL

UG WEAVER

Page: 30 of 163

DSP Concepts

Audio Weaver Module User’'s Guide

|Modu|e: CrossoverFilterl

Array: cutnff| Arguments | properties | Buid |

Name Value
nbands 3-way
order 2nd_(12dB/oct)

HighPrecision false

Description
Mumber of output bands
Order of each of each crossover fitter. Even order uses Linkwitz-Riley. Odd order uses Butterworth
Use high precision version of the filters

EMPHASIS FILTER

The EmphasisFilter module implements a pre-emphasis or de-emphasis, used for noise reduction. The cutoff
frequency is specified by the time constant tau, which is set in the inspector. The examples below show emphasis
and de-emphasis filters with 75 microsecond time contants.

PreEmphasis DeEmphasis

dB

0 T T T

1 H H A3 HE HE 1

10 10° 10 10 10 10 10° 10 10°

Frequency (Hz) Frequency (Hz)

Crassaver._ [

cutoff1]

J— (Hz)
x x 250
o, 2 o
CrossoverFitter] n{ i
[CrossoverFiter] G i
Linkwitz-Riley i 76

0-= 250
250 = 1000
cutoff[2]
1000 -= SR/Z {Hz)
1000 1

Page: 31 of 163

DSP Concepts Audio Weaver Module User’s Guide

 GRAPHIC EQS

The GraphicEQ module splits up a signal into different bands and independently attenuates or amplifies each band.
Under module names and arguments, the number of bands and the order of each filter are set. The bands are
logarithmically spaced across the Nyquist frequency of the input signal. Each band’s gain can be set in the
inspector. This EQ can automatically adjust its bands based on the lowEdge and highEdge arguments. After setting
this to the desirable range, change the resetCenterFregs flag to ‘1’. This will recalculate the bands, throwing away
all slider data (so change the bands before tuning).

TIP — The more bands there are, the higher the filter order should be to better isolate the bands.

The GraphicEQBand module applies a gain to a specific frequency band. This module is the building block of the
GraphicEQ. In the inspector, the gain, lower edge frequency and upper edge frequency are specified. The filter
order is specified from by the module properties. This module is not typically used directly; use GraphicEQ instead.

 HILBERT

The Hilbert module can be considered a filter which simply shifts phases of all frequency components of its input
by -n/2 radians. This operates on complex (real and imaginary) data input and output.

 PINK FILTER

The PinkFilter is a low pass filter with a -3dB/octave slope. It is used to generate pink noise from white noise.

éTHREE BAND TONE CONTROL

The ThreeBandToneControl module is similar to the GraphicEQ except there are only 3 bands. The low, mid, and
high bands’ middle frequency and gain are set in the inspector. The ThreeBandToneControl module is very efficient
and uses first order shelf filters for the low and high frequency gain adjustments. The middle band is a simple gain
and the net result is that the ThreeBandToneControl takes as much computation as a single BiquadSmoothed filter.

CONTROLLABLE FILTERS

The filters presented thus far get their high level design parameters from the inspectors. At times, it is useful to
have a filter whose parameters are controlled by other signals or modules in the layout, such as a source or a
hardware input pin. This is called a controllable filter. The controllable filters folder includes a first and second

AL

UG WEAVER

Page: 32 of 163

DSP Concepts Audio Weaver Module User’s Guide

order filter, along with a lowpass filter, which all have control pins for their frequency. The second order filter can
also enable more pins, like Q and Gain depending on the module arguments.

FIRST ORDER FILTER CONTROL

The FOFControl module implements a first order lowpass or highpass filter. The control pin specifies the cutoff
frequency of the filter and the design equations are executed every block allowing very rapid updates.

 LPF CONTROL

Madule: LPF1Cantrall
1
m‘. Variables Propertiesl Build |
TFFiConor Name Value Min Max
[LPF1Control] N .
L mopthibgiie [msac smoothing Time 10 1] 1000

The LPF Control module is a time varying first order low pass with smoothly varying frequency based on the input
pin.

éSECOND ORDER FILTER CONTROL

The SOFControl filter is built upon the SecondOrderFilterSmoothed module. It has a fixed filterType which is

specified on the inspector. Under module arguments, specify which of the filter design parameters should be
obtained via input pins:

Module: SOFL

Variables| Arguments | properties | Buid |

MName Value Description
fregPin true Is the fitter has frequeny pin
gainPin false Is the fitter has gain pin

gPin false Is the fitter has Q pin

Parameters which aren’t specified by input pins are specified via the variables and properties tab. The SOFControl
module uses deferred processing to compute the filter coefficients. That is, the design equation is not executed
every block. Rather, when the control data on the input pin changes, the module sets a bit in its instance structure
which causes the design function to be called from non-real-time code. This reduces the peak CPU load at the

AL

UG WEAVER

Page: 33 of 163

DSP Concepts

expense of having a slower update rate. In typical applications, the module will update every few 10s of

Audio Weaver Module User’'s Guide

milliseconds. If updating needs to happen more quickly, then use the FOFControl module or the ParamSet module
coupled with a SecondOrderFilterSmoothed module.

A very common use of the SOFControl module is within a perceptual volume control. As the volume of the system

is reduced, overall spectral balance should be maintained. Due to the sensitivity of the human auditory system,

low frequencies and high frequencies appear to drop off more quickly than mid frequencies. Thus, to maintain the

overall spectral balance, boost low and high frequencies as the volume level decreases. The VolumeControl

module accomplishes this with a fixed boost table. For finer control over the boost, use a Tablelnterp module

together with a SOFControl filter as shown below. The control signal “Volume” specifies the listening level and

ranges from 0 (loud) to -80 (soft). The lookup tables convert the Volume setting into low frequency and high

frequency boosts which are applied using the SOFControl module. The low frequency SOFControl module

implements a peaking filter at 40 Hz and the gain is taken from the control pin. The high frequency SOFControl

module implements a high shelf in which the gain is taken from the control pin.

Volume

[DCSourcey2) M & TrableTahla_
walus: 250074 [Tablelnterp]

| /\/\p_

Cubic

BacsTable 5 out of & points
[Tablelnterp]

N e EE e _w_]
} Convert B 4 cut of & points P Convert F
SY5_in 5Y'5 out
Channels: 2 gainPin L freqFin Channels: 2
] SVE_toFioat - - S5 _toFraat i vl
Sample Rate: 43000 [TypeConversion] M\ ["'_I_ | N\ Pr— DypeGonverson] - Sample Rate: 48000
Dista Typs: fract3z fract32 —= flost L L H flost —= fractl2 Data Type: fractd2

Scalert SOF1 SOFZ
[ScalerVZ] [SOFControl] [SOFControl)
gain: O dB Pesk EQ High Shelf
smoothingTime: 10 msec freq = 280 Hz freg = from pin
isDB: 1 gain = from pin gain =0 4B
Q=1 smoothingTime: 10 msec
smoothingTime: 10 msec
Figure 1. Example showing use of the SOFControl module in a table driven loudness control

AL

UG WEAVER

Page: 34 of 163

DSP Concepts Audio Weaver Module User’s Guide

- e
a e —] TrebleTable - cIEH

X H Tide 1 Show B A e R - [HeeiShow
Y H

(] Point Coordnates

Pant Coorinates

S : Lne Sopes =T Line Sizpes

Ao Gt 6 : oS N S 4

: [N) shew S i i show
1 : : RN : H H N, i

A Gt

% Spacng

X Spacing

¥ Spacng ¥ Spaciag

Reset Pons 0 Rang Resel Pt o Range
-0 L} = 20 [} .

Figure 2. Lookup tables used in the table driven loudness control example. The left table converts the volume setting into a bass boost and
the right table does the same for the high frequency adjustment.

FILTERS WITH RAW COEFFS

Audio Weaver contains several filter types which operate on raw coefficients. These filters are for expert users
who understand DSP and know how to calculate the filter coefficients3. There are two types of filters — Finite
Impulse Response (FIR) and Infinite Impulse Response (IIR). Although Audio Weaver supports both types of filters,
the majority of the filters used in audio applications are IIR due to their computational efficiency.

The most basic IIR filter is the Biquad and it is implemented with the difference equation:
a0yn=b0xn+blxn—1+b2xn—2—alyn—1—a2yn—2

There are 5 coefficients that the user must set: bo, b1, bz, a1, and az (ao is always assumed to be 1). Audio Weaver
does not check for stability and care must be used when computing the filter coefficients. There are several
variants of Biquad filters. The simples — Biquad — has a single stage and implements the different equation shown
above. BiquadCascade implements N stages of filtering with each channel using the same coefficients.

3 Matlab is often used by expert Audio Weaver users to compute coefficients and then update them in the block
diagram.

AL

UG WEAVER

Page: 35 of 163

DSP Concepts

Audio Weaver Module User’'s Guide

BiquadNCascade implements N stages with each channel have its own set of coefficients. Finally, BiqguadSmoothed

implements a single Biquad stage with coefficient smoothing on a block-by-block basis.

FIR

hinl

FIR

-E[Biquad

Biquad

uﬂ[BiquadCascade

Biquad
Cascade

-@r BiquadSmoothed

Biquad
Smoothed

ﬂﬂ[BiquadNCascade

Biquad M
Cascade

Time domain FIR filter

Specify filter length in module
properties

Second order IR filter.
5 filter coefficients are specified.

No smoothing.

Multiple Biquad filters in series.

The number of filters is specified in
module properties.

The same coefficients are used per
channel.

Second order IR filter.
5 filter coefficients are specified.

Smoothed on a block-by-block basis

Multiple Biquad filters in series.

The number of filters is specified in
module properties.

Different coefficients are used per
channel.

AL

UG WEAVER

Page: 36 of 163

DSP Concepts Audio Weaver Module User’s Guide

Sparse FIR filter in which most values

FIR Sparse are zero.
o, | FIR Sparse

Less convolution cycles than normal
FIR

Sparse FIR that connects to a delay
state writer.
FIR Sparse Reader
FIR Sparse Reader Convolution is based on a pointer

rather than a separate FIR buffer.

Like FIR Sparse Reader except half the

,,‘_ FIR Sparse Reader Fract16 FIR Sparse Reader memory.

— Fractl6
Data is converted to fract16 for

computations and has a conversion for
the output if necessary.

HIGH PRECISION FILTERS

Audio Weaver contains a variety of Biquad filters for equalizing audio. Some filters require raw coefficients (such as
Biquad or BiquadCascade) while others contain built-in design equals (such as the SecondOrderFilter or
ButterworthFilter). These filters are implemented using a Direct Form 2 (DF2) structure:

stateA y[n]

x[n]

AL

UG WEAVER

Page: 37 of 163

DSP Concepts Audio Weaver Module User’s Guide

All Biquad filters including the DF2 have 5 coefficients. The advantage of the DF2 structure is that it requires only 2
state variables per filter as compared to 4 state variables for the DF1 structure.

These Biquad filters are implemented using floating-point arithmetic and are generally fine for most audio
applications. Floating-point arithmetic, though, is not a panacea for all numerical issues and these filters can still
suffer from quantization noise. The noise manifests itself as low-level noise correlated with the level of the input
signal. Quantization noise is exacerbated by high sampling rates (96 kHz and above) and by having poles very close
to the unit circle and this usually arises when making very low frequency EQ changes.

To solve these noise issues Audio Weaver includes a High Precision filter modules. These modules use floating-
point input and output data and are compatible with the other floating-point modules. Internally the high
precision filters use a proprietary DSP Concepts filter structure which significantly reduces quantization noise. The
filters are also efficient with a typical Biquad requiring 7 MAC operations vs the 5 needed in a DF2 Biquad.

The High Precision modules are designed to be drop in replacements for the non-high precision filters. That way,
numerical problems can be resolved by replacing the offending filter with its high precision version.

Biquad BiqudSmoothedHP Smoothly varying Biquad
Smoothed
Butterworth lowpass, highpass, and
' ButterworthFilterHP) pass, Nghpass,
Butterworth allpass filters
Fitter HP
Biquad BiquadCascadeHP Cascade of N Biquad stages
Cascade HP
GraphicEQBandHP Single band of a graphic equalizer
Graphic EQ
Band HP
= Controllable second order filter with
SOFControlHP . .
SOFESW“Z" design equations

Page: 38 of 163

DSP Concepts

=aF
HP

o
SOF N HP

EaF
HE

SOF HP

Volume
Control HP

SOFCascadeHP

SecondOrderFilterHP

VolumeControlHP

Audio Weaver Module User’'s Guide

Cascade of second order filters each
with design equations

Single second order filter with design
equations

Fletcher Munson volume control
with loudness compensation

The crossover filter module (XoverNway) is actually a subsystem consisting of multiple individual modules. The

module properties give the option to construct the crossover using standard Biquads or high precision Biquads:

| Module: CrossoverFilterl

Array: cutoﬂ‘| Arguments | properties | Build |

MName Value
nbands 3-wiay Nurmber of output bands
e 2ol 024Blogt) o e Quderof 2ach of 2ach crossover fitar. Qven order uses Linkwitz-Riley. Odd order uses Butterworth
LHighPrecision false Use high precision version of the ﬁlters_l

The graphic equalizer gives the option of using standard precision or high precision filters.

AL

UG WEAVER

Page: 39 of 163

THD+N (dB)

20

-20

-40

-60

-80

-100
-120
-140
-160
-180

200 5 s
10 10 10 -160

DSP Concepts Audio Weaver Module User’s Guide

Here is an example of the benefits of the high precision filter. The system in the example has a peaking filter at 20
Hz with a gain of 6 dB and a Q of 2 and operates at a 48 kHz sample rate. The total harmonic distortion and noise
(THD+N) for different input frequencies is plotted below. First for standard Biquad filters

And now with a high precision filter, notice that the noise
floor is reduced significantly — by up to 90 dB at low

frequencies.

20

N 0

~__ -20
N -40

= 60

&
S

-100

THD+N (dB)

120 =1
L Frequency Response U\-’\\V_,_,\'
——— THD+N -140 \ VA~

13 F—F F FF

1

Frequency (Hz

180 H Frequency Response
THD+N
3

 S————

-200
10' 10° 10°
Frequency (Hz
For the interested reader, this measurement is performed by passing sine waves of different frequencies through
the filter. Apply a notch filter at the output which removes the sine wave and then measure the RMS energy in the
residual. This residual energy equals the THD+N. The measurement is repeated for many different frequencies and

the plot reflects the measured THD+N at each input frequency.

COMMON FILTER MODULES

The following filters are found as modules with no folder in the Filters directory. This is because they are the most
common types of filters, which cover most general cases of filtering needs.

BUTTERWORTHFILTER

This module implements lowpass, highpass, or allpass filters using a Butterworth design. The filters have a gain of 0
dB in the passband and are then monotonically decreasing in the stopband. The filter order is specified under
module properties and ranges from 1% order (6dB/octave) to 10" order (60dB/octave). The filter order can only be
changed in Design mode. Specify the filter type on the inspector (lowpass, highpass, or allpass) as well as the cutoff
frequency, in Hz. Since these parameters are on the inspector, the filter type and cutoff frequency can be changed
at run-time. Unfortunately, the ButterworthFilter does not have coefficient smoothing and there may be
discontinuities when coefficients are updated.

AL

UG WEAVER

Page: 40 of 163

DSP Concepts Audio Weaver Module User’s Guide

Butterworth Lowpass Filter

0 |
A N\
; - &\ \\\\\ AN \
. \Y&\\\\:\\ \ \\\\
AN NN

10° 10° 10
Frequency (Hz)

Figure 3 - Butterworth lowpass filter frequency response as a function of filter order. The filter order goes from 1 order (least steep line) to
10t order (steepest line). The cutoff frequency is 100 Hz and the sample rate is 48 kHz

Page: 41 of 163

DSP Concepts Audio Weaver Module User’s Guide

Butterworth Highpass Filter

20

NN

L

Gain (dB)
A
o

SN\ N LN

N\

N\

-100

10° 10° 10"
Frequency (Hz)

Figure 4 - Butterworth high filter frequency response as a function of filter order. The filter order goes from 1 order (least steep line) to 10t
order (steepest line). The cutoff frequency is 100 Hz and the sample rate is 48 kHz

SECONDORDERFILTERSMOOTHED

This module is the most frequently used filter among all of the Audio Weaver modules. It implements a 2" order
Biquad filter and includes design equations for 20 different filter types. The filter type and high-level design
parameters (frequency, gain, and Q) can be changed at run-time using the inspector:

I

Gain

Butter 1sti PF
Butter 2ndLPF
Butter 1stHPF
Butter 2ndHPF
Allpass1st
Allpass2nd
ShelfLow
ShelfLowq
ShelfHigh
ShelfHighQ
PeakEQ

Motch
Bandpass
Bessel1stLPF
Bessel1stHPF
ShelfistLowAsym
ShelfistHighAsym
ShelfistowSym
Shelf1stHighSym

Page: 42 of 163

DSP Concepts Audio Weaver Module User’s Guide

Depending on the filter type, some parameters are not used. See the table below for the filter types available and
which control parameters are applicable.

Pass Through s Pass through

filterType =0

10

Applicable parameters: none.

Response (dB)
o

Biquad coefficients are set to b0=1, b1=0,
b2=0, al=0, and a2=0. The filter runs and
consumes processing but the output
equals the input.

-10

15 2 3 "
10 10 10 10
Frequency (Hz)

Gain
15

Gain 10

filterType =1

Applicable parameters: gain

Response (dB)
o

-10

A simple gain with coefficients set to
b0O=undb20(gain), b1=0, b2=0, a1=0, and
-15

a2=0 10" 10° 10° 10*
Frequency (Hz)

ALY)

AUCHD WEAVER

Page: 43 of 163

DSP Concepts Audio Weaver Module User’s Guide

1st Order Butterworth LPF

15

10

1% order Butterworth lowpass filter

-10 N\

filterType = 2

Response (dB)
/
/
/

-20

25 \

Applicable parameters: freq -
. N \

-35 N

40 2 3 4
10 10 10 10
Frequency (Hz)

2nd Order Butterworth LPF

15

10

2" order Butterworth lowpass

. \ NN

filterType =3

Response (dB)
=
o
~

-20 \ \

Applicable parameters: freq -25 \ \

-40 2 3 " ‘
10 10 10 10
Frequency (Hz)

AL

AUCHD WEAVER

Page: 44 of 163

DSP Concepts Audio Weaver Module User’s Guide

1st Order Butterworth HPF

15

10

1% order Butterworth highpass

-10 / /

e
filterType =4 //

-15

Response (dB)
AN
\
AN

Applicable parameters: freq 25 / /

.35 / /1

40 < 2 3 4
10 10 10 10
Frequency (Hz)

2nd Order Butterworth HPF

15

10

2" order Butterworth highpass

filterType =5 -10 /

Response (dB)
=
o
N

Applicable parameters: freq -25 / /
-30

-35 / /

-40

10 10° 10° 10*
Frequency (Hz)

AL

AUCHD WEAVER

Page: 45 of 163

Audio Weaver Module User’'s Guide

DSP Concepts

Measurement 1 - Phase

1%t order allpass

(Bap) aseyq

=6

filterType

' ' '
' ' '
= = =
o~ <+ 7]
- - in

Applicable parameters: freq

10’

-180

Frequency (Hz)

Measurement 1 - Phase

2" order allpass

450 -~

(

Bap)

=7

filterType

200 -----

85eUd

250 -----

™m
[G)
—
Y—
o
[C)
<
1)
Qo
©
a
™
L
=,
(=]
=
o
=0
(=0
-4
[
=
(=]
o
of
©
c
©
og
7]
S
=]
0
o
(7]
-
7]
€
©
—
©
o
2 M
o
@ H
S I—._
2 :
< A"”
Fi

DSP Concepts Audio Weaver Module User’s Guide

2nd order low shelf
15

2" order low shelf

filterType =8 10 ™

Applicable parameters: freq and gain

Response (dB)
o

-5 Ll
Use as a low frequency tone control //

10
/’/
-15 T > 3 4
10 10 10 10

Frequency (Hz)

2nd order low shelf with Q
15

10 "A

2" order low shelf with Q

filterType =9

Response (dB)
o

Applicable parameters: freq, gain, and Q

-10

15 2 3 "
10 10 10 10
Frequency (Hz)

Page: 47 of 163

DSP Concepts Audio Weaver Module User’s Guide

2" order high shelf 2nd order high shelf
15

filterType = 10

10 7

Applicable parameters: freq and gain

Response (dB)
o

Use as a high frequency tone control -5

NN

-10

15 2 3 4
10 10 10 10
Frequency (Hz)

2nd order high shelf with Q

15

10

2" order high shelf with Q 5

filterType =11

Response (dB)
o

Applicable parameters: freq, gain, and Q

-10

15 2 3 "
10 10 10 10
Frequency (Hz)

ALY)

AUCHD WEAVER

Page: 48 of 163

DSP Concepts Audio Weaver Module User’s Guide

2" order peaking / parametric

Peaking / Parametric filter

filterType = 12 15

10 \

Applicable parameters: freq, gain, and Q

3 7/ / \
[7
2 0 i
o N
. . . Z \\ \
Commonly used for generic equalization 8 \ /

since it has controllable frequency, gain, -5 W
and Q settings. //

-10 /

15 2 3 4
10 10 10 10
Frequency (Hz)

Notch filter

10

2" ord tch 5 O\
order notc . ///

filterType = 13 ; /
15 ‘

-20

Response (dB)

-25

Applicable parameters: freq and Q

-30

-35

-40 2 3 4
10 10 10 10
Frequency (Hz)

ALY)

AUCHD WEAVER

Page: 49 of 163

DSP Concepts Audio Weaver Module User’s Guide

Bandpass filter

10

2" order bandpass filter 5 \ N
-10 /

filterType = 14
-15

A A\
-30/ / \

35 S / N\ \

NI
-40 2 3 4
10 10 10 10
Frequency (Hz)

Response (dB)
AN
_—
/
s

Applicable parameters: freq and Q

O\
\\

1st Order Bessel LPF

15

10

1%t order Bessel lowpass filter - —~—L ~

filterType = 15 -10 AN

Response (dB)
/
/
4

-20

Applicable parameters: freq -25 \ \
-30 S

-35 \\

-40 2 3 4
10 10 10 10
Frequency (Hz)

AL

AUCHD WEAVER

Page: 50 of 163

DSP Concepts Audio Weaver Module User’s Guide

1st Order Bessel HPF
15

10

1% order Bessel highpass filter

filterType = 16

Response (dB)
N
AN

-20

Applicable parameters: freq 25 Y /
-30 /

35 /

-40
10 1

10° 10*
Frequency (Hz)

o

1st order asym low shelf

15

10

N

1%t order asymmetrical low shelf ~—

filterType = 17

Response (dB)
o

\

N\ ///,

Applicable parameters: freq and gain

-10

15 3 4
10 1 10 10
Frequency (Hz)

(=}

AL

AUCHD WEAVER

Page: 51 of 163

DSP Concepts Audio Weaver Module User’s Guide

1st order asym high shelf

15
]
10 anl
/| —
/ T
//
1%t order asymmetrical high shelf 5 v]
_ Y yzd
. g e v L
filterType = 18 b B
2 0
2 S~
4 \\\‘“—-h
x N
s AR
A\
Applicable parameters: freq and gain ‘\
\
-10 \\
15 5 3 4
10 10 10 10
Frequency (Hz)
1st order symmetrical low shelf
15
-\\\
10 N
\\\\\\
1%t order symmetrical low shelf 5 SUIRNN
\\ AN
g RN
filterType = 19 b T
g 0 //;
2 =
8] f;/
5 // /
— / /
Applicable parameters: freq and gain ///
T =i
-10 Bnbs
5% 2 3 "
10 10 10 10

Frequency (Hz)

Page: 52 of 163

DSP Concepts

1%t order symmetrical high shelf

filterType = 20

Applicable parameters: freq and gain

The Butterworth filter from SecondOrderFilterSmoothed is the same as the ButterworthFilter

Audio Weaver Module User’'s Guide

1st order symmetrical high shelf

15
//
10 y
Al
/A7
] /o
~ Ve
3 é//’__,_--——-
@ el
g 0 T~
=% ~—
@ i_-___h
o ™N
5 N
< T~
N
™N
\\ ~——
-10 N
\
-15° 5 5 4
10 10 10 10

Frequency (Hz)

module of equal filter order. However, SecondOrderFilterSmoothed only implements 15t and 2"

order Butterworth filters. Higher order Butterworth filters can only be implemented by the

ButterworthFilter module.

The SecondOrderFilterSmoothed implementation of the first order Butterworth filter is more

computationally efficient than the ButterworthFilter module.

Low/high shelf filter and low/high shelf filter Q are identical if Q is set to 0.707 (V0.5).

éSECOND ORDER FILTER SMOOTHED CASCADE

This module contains several
SecondOrderFilterSmoothed modules in
series. This can be used to implement a
more complicated EQ with only a single
module. Under module properties,

specify the number of stages of filtering.

If the number of stages is set to 1, then
this module is equivalent to the
SecondOrderFilterSmoothed module.
When there are multiple stages, the
inspector expands as shown right:

SOFCascadel B
freq[1] gain[1] freq[2] gain[2] freq[3] gain[3] freq[4] gain[4]
(Hz) (dB) (Hz) (dB) (Hz) (dB) (Hz) (ds)

250 0 250] 0 250 0 250 i
A | G | G »| G >
- & 15 - - y- 15 - - y- 15 - - - 15 -

10 - 10 - 10 - 10 -
5-1- 5-1- 5-]- 5-1-
Q] Q2 QL3 QM
0 0 0 0
1 5. 1 5. - 1 5. - 1 5-|-

P -10 P -10 - PR -10 - PR -10 -
o/- 5 -15 o,/- s -15 o,/- s -15- o,/- s -15-
X ARE" X SRS X J:| - X AR
0 20 0 20 0 20 0 20

filterType[1] filterType[2] filterType[3] filterType[4]
[ouse ~ oo ~ oo ~ oo -]

AL

UG WEAVER

Page: 53 of 163

Adaptive

Calculated Coeffs

Controllable

High Precision

Raw Coeffs

Floating Modules

DSP Concepts

Audio Weaver Module User’'s Guide

|TABLE OF FILTER MODULES

LMS

Allpass Pair

Audio Weighting
Crossover Filter
Emphasis Filter

Graphic EQ

Graphic EQ Band

Hilbert

Pink Filter

Three Band Tone Control
Tilt Filter

First Order Filter Control
LPF1 Control
Second Order Filter Control

Biquad Cascade (Precise)
Biquad Smoothed (Precise)
Butterworth Filter (Precise)
Graphic EQ Band (Precise)
Second Order Filter (Precise)
SOFCascade (Precise)
SOFControl (Precise)

Biquad

Biquad Cascade

Biquad N Cascade

Biquad Smoothed

FIR

FIR Sparse

FIR Sparse Reader

FIR Sparse Reader Fract16

Order

(FIR length)

Variable

Cascaded 2nd
Variable up to 10th
1st

Variable up to 12th
Variable up to 12th
12th

8th

2nd

Variable 2nd

1st
1st
1st/2nd

Cascaded 2nd

2nd

Variable up to 10th
Variable up to 12th
1st/2nd

Cascaded 1st/2nd
1st/2nd

2nd

Cascaded 2nd
2nd

2nd

(FIR length)
(FIR length)
(FIR length)
(FIR length)

Usage Tip
signal to be learned' goes into reference pin.

set Rs for better band separation

change weighting with the dropdown variable.
frequency will split into upper and lower bands
used typically by weighting formulas

automatic frequency setting with module variables
up to 12th order, useful.

+-90 degrees added to phase

turns white noise pink. Turns pink noise red.
Cheap solution for handling "full spectrum"

Makes noise more 'blue' or 'pink' based on slope.

immediate control
immediate control
delayed control

High Precision, use for handling low freq, high SR, or sensitive ears.

(same)
(same)
(same)
(same)
(same)
(same)

clicks/pops with changes, this is for constant filter.
same as above, higher order.

cascade with different filter responses.

smoothly varying, use for end-user control.
convolution FIR

FIR with mostly zeros, computationally efficient.

Hook to delay state writer, unique iterator feeds input for convolution

twice the memory efficiency as above.

Butterworth Filter Variable up to 10th Only odd allpasses are supported. Use SOF for even allpasses.
Second Order Filter Smoothed 1st/2nd 20 different filter types, varying orders.
Second Order Filter Smoothed Cascade Cascaded 1st/2nd same as above, but cascaded.

AL

UG WEAVER

Page: 54 of 163

DSP Concepts Audio Weaver Module User’s Guide

FREQUENCY DOMAIN

FREQUENCY DOMAIN MODULES

Modules for processing signals in the frequency domain are found in the Frequency Domain folder. Frequency
domain processing yields novels solutions to audio processing problems and may also lead to more efficient
implementations. This section describes the main concepts behind frequency domain processing, then Filterbank
Processing describes more sophisticated processing using weighted-overlap short-term Fourier transform
filterbanks.

COMPLEX DATA SUPPORT
Audio Weaver natively supports complex data within wire buffers. The data is stored in an interleaved fashion:
real[0], imag[0], real[1], imag[1], real[2], etc

For multichannel data the interleaving of real and complex data happens at the lowest level. For example,
interleaved stereo data is stored as:

L_real[0], L_imag[0], R_real[0], R_imag[0], L_real[1], L_imag[1], R_real[1], R_imag[1], etc.

Two modules are provided to convert between real and complex data

Converts two real signals into

ELILEN
complex data using one as the real
ReallmagToComplex . .
Real Imag To part and the other as the imaginary
Complex
part
ComplexToReallmag Converts a complex signal into
Fadinag| . .
Complex To separate real and imaginary
Real Imag components

AL

UG WEAVER

Page: 55 of 163

DSP Concepts

Audio Weaver Module User’'s Guide

The system below essentially does nothing except convert two mono signals into complex and then back again. If

view wire info is enabled, (“View—>Data type”) it will mark complex wires with a “C”.

HEHEE

232 232
HW ; 43000 Hz > T YPE [am000 He
fract3z | Convert float
SYS_in
Channels: 2 lm‘
BlockSize: 32 _toTina

R Conversion]
Sample Rate: 43000 [YPE
Data Type: fract32 fract32 —» fioat

o

SYS_deint
[Deinterleave]

1x32 132

48000 Hz I I 48000 Hz
flost —=resl [Re,lm] 132 Complex resl float 32 T 32
—) To CMplx[: 48000 Hz =omplx Tp e 48000 He | YDEHD 4000 Hz S HW
42000 Hz ™29 Complex I-km -C Re,m] "™28F 45000 Hz float | LOMVET | fract2 v ot
fleat float Jels:
ToComplex ToReallmg1 SYS_foFract Channels:2

[RealimagTeComplex] [ComplexToReallmag]

SYS_inter float —= fract32

[Interleave]

BlockSize: 32

[TypeConversion] o, e pate: 48000
Data Type: fract32

TRANSFORM MODULES

Audio Weaver provides 3 different transform modules for converting between the time and frequency domains.

Complex

FFT - Real
Inverse

Complex FFT. Supports both forward

Cfft .

and inverse transforms
Fft

Forward FFT of real data
Ifft

Inverse FFT yielding real data

AL

UG WEAVER

Page: 56 of 163

DSP Concepts

The complex FFT
takes a complex N-
point input and
generates a
complex N-point
output. The module
is configured on the
module properties
as either a forward
or inverse
transform.

Audio Weaver Module User’'s Guide

Module: CFRL

Arguments | properties | Buid |

Mame Value Description
isFft Forward specifies forward or reverse

The Fft and Ifft modules are designed to operate on real signals. The Fft modules takes an N-point real input and

generates an N/2+1 point complex output. The output signal contains frequency samples from DC (w = 0) all the

way up to and including the Nyquist frequency (w = 7). A property of the real FFT is that the samples at DC and

Nyquist contain real data only and the imaginary components are guaranteed to be zero. These samples are still

stored as complex values but the imaginary component is zero. The output of the real FFT will therefore consist of

the samples:

X[0]
X[1]

X[2]

X[N/2-1]

X[N/2]

real
complex

complex

complex

real

The Ifft takes N/2+1 complex samples and returns a real N-point sequence. The Ifft ignores the imaginary

component of the DC and Nyquist samples.

WINDOWING

Before an FFT is computed the signal is typically windowed to prevent edge effects from influencing the results.

There are 3 modules which perform windowing.

AL

UG WEAVER

Page: 57 of 163

DSP Concepts Audio Weaver Module User’s Guide

Window Simple window

Window

WindowOverlap

Window
Qverap

Window with overlapping

WindowAlias
Windowing followed by time aliasing

Window Alias

The windowing modules are for advanced users who use Matlab to compute
window coefficients.

Windowl =]

The Window module can compute a large number of different window functions.
Under module properties, specify the length of the window to apply. Then on the winType | startindex
inspector, specify the starting and ending indexes of the window as well as the rectwin ¥ 0
window type and an optional amplitude. e
110 -
100 -
90 -
80 -
Allowing the ability to change the starting and ending indexes of the window is 70 -
80 -
more flexibility than is usually needed. 50 -
40 -
The WindowOverlap module has an internal FIFO that buffers up data into ;E -
overlapping blocks. For example, a 64-sample input block size with a 50% overlap 13 @
turns into 128 sample blocks, to be windowed. Essentially, the WindowOverlap

module contains a Rebuffer module combined with a Window module. The module
has an internal array of window coefficients. This array is initialized to a Hamming
window (raised cosine) at instantiation time. To change the window coefficients
use the Matlab scripts.

The WindowAlias module applies a window followed by time aliasing the sequence to a shorter length. This
module is used in the analysis back of short-term Fourier transform based filterbanks.

Reduces block size by overlapping
OverlapAdd
Overap Add blocks

AL

UG WEAVER

Page: 58 of 163

DSP Concepts Audio Weaver Module User’s Guide

The OverlapAdd module performs the opposite of the Rebuffer module. The module has a large input block size
and a smaller output block size. The module contains an internal buffer equal to the input block size. The module
takes the input data, adds it to the internal buffer, and then shifts out one block of output data. The data in the
internal buffer is also left shifted and the leading samples are filled with zeros. The OverlapAdd module finds use in
fast convolution algorithms.

Renliante
‘Wisdam

Dvidan RepWinOverl Replicates data, applies a window,
y epWinOverla
Hoep ;-I“d'ln P P and then performs overlap add
wverdap

The RepWinOverlap module is for advanced users building synthesis filterbanks. The module replicates a signal N
times, applies a window, and then performs overlap add.

ZeroPad Adds zeros at the end of a buffer
Zero Pad

The ZeroPad module inserts zeros at the end of a signal. Specify the length of the output buffer under module
properties. If the output is longer than the input then the signal is zero padded. If the output is shorter than the
input then the signal is truncated.

 COMPLEX MATH

The frequency domain modules have a large number of modules which operate on complex data. The modules
here are listed without detailed explanations because the underlying functions are basic and easily understood.

Jo

Complex
Angle

ComplexAngle Computes atan2 of complex data

Conjugates data by negating the

ComplexConjugate

Complex imaginary component
Conjugate

AL

UG WEAVER

Page: 59 of 163

DSP Concepts Audio Weaver Module User’s Guide

ComplexMagnitude VR*R+1x1
Complex
Magnitude
Complex Mag ComplexMagSquared R*R+1x1
Square
ComplexModulate Multiplies by ejwk
Complex
Meodulate
o Complex x Complex, or
ComplexMultiplier
Complex
Muttiplier Real x Complex

Canple
Converts to Polar (angle and
ComplexToPolar

Complex To magnitude)
Polar

Poln
T
Canp k|
Palar To
Complex

PolarToComplex Converts from Polar to Real/Imag

The modules listed above operate on complex data only. A few of the other Audio Weaver modules found outside
the Frequency Domain folder are also able to operate on complex data type:

BlockConcatenate Combines blocks of complex data

BlockDelay Delays by multiples of the block size

BlockExtract Extracts a portion of the complex data

BlockFlip Frequency flips data

Deinterleave Pulls apart multichannel complex signals into individual mono complex signals

AL

UG WEAVER

Page: 60 of 163

DSP Concepts

Demultiplexor

Interleave

Multiplexor
ShiftSamples
Adder
ClipAsym

Invert

Mixer
MixerDense
MuteSmoothed
ScaleOffset
ScalerDB

Scaler

Subtract
SumDiff
WhiteNoise
ScalerDBControl

ScalerControl

Audio Weaver Module User’'s Guide

Outputs complex data to one output pin; zeros the rest

Combines multiple mono complex signals into a single multichannel complex
signal

Selects one of N complex signals

Left or right shifts complex signals

Adds two complex signals

Clips the real and imaginary components

Multiplies by + or -1. Set smoothingTime = 0.

Mixers together complex signals

- Mixers together complex signals

Multiplies by +1 or 0. Set smoothingTime = 0.

Scale both the real and imaginary components and adds an offset

dB gain without smoothing

Linear gain without smoothing

Subtracts two complex signals

Adds and subtracts complex signals

Generates uncorrelated noise in both real and imaginary components
dB gain with gain value taken from a control pin. Set smoothingTime = 0.

Linear gain with the gain value taken from a control pin. Set smoothingTime =
0.

Page: 61 of 163

DSP Concepts Audio Weaver Module User’s Guide

FILTERBANK PROCESSING

 INTRODUCTION

This Section describes the filterbank blocks. The blocks are based on a weighted overlap-add (WOLA) design and
are applicable to a wide range of audio processing tasks. The document first describes how the blocks work from
an end user’s point of view. It then describes the theory behind the filterbanks and how they lead to efficiency
during runtime.

USING WOLA AND SUB-BAND BLOCKS

The WOLA filterbank blocks are part of the DSPC Concepts IP Folder. The Frequency Domain contains the key set
of Audio Weaver modules which are used for performing frequency domain computations. There are blocks for
FFTs, windowing, complex operations, etc. Frequency domain operations often involve filterbanks, and Audio
Weaver also includes modules for implementing entire weighted overlap-add filterbanks. There are separate
modules for the forward filterbank (the analysis bank) and the inverse filterbank (the synthesis bank).

AL

UG WEAVER

Page: 62 of 163

DSP Concepts Audio Weaver Module User’s Guide

The blocks are called “WOLA Analysis” and

“WOLA Synthesis”. When dragged out, they
will appear as follows in the layout:
WoLA WoLA
Forward Inverse
f f t
Fitterbank B Fitterbank B
(Anahsis) (Synthesis)
The input to the WOLA Analysis bank is real
time domain data and the output is complex WOLAAnalysis1 WOLASynthesis1
. - Outp mp WOLAANatysis] WOLASynthesis]
frequency domain data. Slmllarly, the Input to numBand=s: 16 numBand=s: 16
the WOLA Synthesis bank is complex attenuation: 0.0 dB attenuation: 20.0 dB
X . latency: & samples latency; &2 samples
frequency domain data and the output is real

time domain data. When configuring the
filterbanks using Module Name and
Arguments, the FFT size (K) and the stopband
attenuation between subbands is specified. This holds for both the analysis and the synthesis banks. Under module
name and arguments, this would show:

Module WOLAARahysis]]

Arguments | properties | Build |

Mame Value Description
K 16 FFT Size
attenuation a0 Stopband attenuation between subbands

AL

UG WEAVER

Page: 63 of 163

DSP Concepts

The FFT specifies the number of frequency domain “bins” and the
input (and output) block size is always % of the FFT size. For example, if
using a 32 sample block size will only work with an FFT size K = 64.
Manually set this on both the analysis and the synthesis filterbanks.
This will error out if improperly specified:

The attenuation relates to the separation between outputs of the
filterbank, in dB, and will be described in more detail later in the guide.
A “safe” value to use is somewhere in the range from 40 to 80 dB.
When combining analysis and synthesis filterbanks, ensure that the
same value of attenuation is used throughout.

Assuming a block size of 32, set the FFT size K = 64. Making
connections between blocks and then showing wire sizes:

Audio Weaver Module User’'s Guide

r
Audio Weaver Error

"AWE ERROR
Routing error 3t module input pin WOLAARahsisLt
Block sizes did not validate
Wire properties:
numChannels 1
blockSize: 32
sarmplefate: 48000
dataType float’
iwComplec 0

Fin properties
numChannelsRange]
blockSzeRange B
z=mpleRateRange |
dataTypeRange {float]
w=lomplexRange 0

Data Type: fract32

numBands: 64
attenuation: 80.0 dB
latency: 352 samples

S o g
w32 w32 i 1332 WOLA w33 || T | %32 %32
W ; 43000 Hz > _1YPE [45000 Hz o —e> o 48000 Hz Forward ¢] |yopopz _dmf IMVErSE il lagaopiz b TYPE plasnoorzd pu
. fract3z onvert float x float Fitterbank float - G Fiterbank | float Convert ™ fappaz
CHSYS_I[; B (Analysis) (Synthesis) CEYS_TSU_t1
s sl SV5_toFloat Routert i _ b___a___m SV5_toFract R il M
Samnis Rate: 4g0gg [TYPeConversion] [Router] WOLAARalysis1 WOLASynthesis1 [TypeConversion] oo 0 e 23000
P : fract32 —= float out[1] = pin[1].chan[1] [WOLAAnalysis] [WOLASynthesis] float —= fract32 P :

numBands: 64 Data Type: fract32

attenuation: 80.0 dB
latency: 352 samples

Note that the output of the filterbank contains 33 complex samples rather than 64. This is because the filterbank

modules use real FFTs and as a result discard the redundant conjugate symmetric data. Only K/2+1 bins are kept,

which in this case equals 33. The bins have the following properties:

Bin k=0. Real data.
Bin k=1. Complex data.
Bin k=2. Complex data.
Bin k=31. Complex data
Bin k=32. Real data

The first and last bins have real data; this is a property of the FFT and resu

Its from the fact that the input data is

real. Audio Weaver stores the output of the FFT as 33 complex values with the imaginary parts of bins k=0 and

k=32 set to zero.

AL

UG WEAVER

Page: 64 of 163

DSP Concepts Audio Weaver Module User’s Guide

The filterbanks accept any number of channels of input data, but it is not a typical scenario in Audio Weaver?.

Data Type: fract32

numBands: 64

numBands: 64

232 %32 WOLA 2x33 WOLA a2 232
Hw [48000 Hz > Type .l ampoo bz —imt FOTWAMD gl | ponnpp e VErse ol gy b TYPE pasonniz pw
_ fractzz | Convert Fhoat Fitterbank float - C Fitterbank Fhoat Convert”™ frzrpaz
SYS_in (Analysis) (Synthesis) S5 _out
Channels: 2 — Channels: 2
Blocksize: 32 S ¥otokidat T " ; poinkract BlockSize: 32
Sample Rate: 4500p [TYPECONVersion] WDLAAhalysia HOLA ythcass [TypeConversion] oo oie Rate: 42000
P fract32 — fioat [WOLAAnalysis] [WOLASynthesis] fioat — fract32 P ;

Data Type: fract32

attenuation: 80.0 dB
latency: 352 samples

attenuation: 80.0 dB
latency: 352 samples

The text below the filterbank modules also shows the latency through the filterbanks, in samples. The latency is
the combined latency through the analysis and synthesis filterbanks given the current values of K and attenuation.
Increasing K or increasing the attenuation increases the latency through the filterbanks. use the displayed latency
to time align other signals in the system. For example, to check the reconstruction properties of the filterbanks,
compensate using a sample delay module:

-M
Delay1 132
P [Delay] 48000 Hz
43000 Hz maxDelay: 704 samples float
float currentDelay: 352 samples.
WoLA WoLA 1x32 Type a3E
=2 | =P F d 233 ' 48000 Hz 1> _"YPE puspidHz S Hw
W 48000 He » TYPE 4000 He —p-t FOrWaArd gl enpe g Iverse float Convert” yracpaz
_ fractzz | Convert float Fiterbank float- C Fiterbank SYS_out
CnSYS_lg 5 (Analysig) (Synthesis) P m Channels: 2
annels: — . BlockSize: 32
L S¥S_toFloat
BlockSize: 32 [mypeConversion] WOLAAnalysis1 WOLASYnihesis1 et ﬂ;ls;g?r.u:;r;rcstlgzn] Snmple Rate: 43000
pample Rate: 48000 =0 0h-0 " ot [WOLAANalysis] [WOLASynthesis] + Data Type: fract32
Data Type: fract32 numBands: 54 numBands: 54
attenuation: 80.0 dB attenuation: 80.0 dB
latency: 352 samples latency: 352 samples

The output of the WOLA synthesis bank equals the input of the analysis bank but delayed by 352 samples. In the example above, this latency
is compensated with a delay, so the output of the subtract module is essentially zero.

This example shows the meter module with a residual difference at around -80 dB. The filterbanks are not perfect
reconstruction but introduce a small amount of aliasing noise. The level of aliasing noise is directly related to the
attenuation setting of the filterbanks.

4 Note that although the analysis and synthesis filterbanks accept any number of channels, most modules in the
Frequency Domain folder only operate on mono signals. It is recommended to design systems with mono
frequency domain data for greatest flexibility.

AL

UG WEAVER

Page: 65 of 163

DSP Concepts Audio Weaver Module User’s Guide

The frequency domain outputs of the analysis filterbank represent the outputs of a series of bandpass filters. There

are K filters and the spacing between bins is 27” radians, or if the sample rate of the system is SR, then the spacing

between bins is % Hz. For example, if the sample rate of the system is 48 kHz and K=64, then the spacing between

bins is 750 Hz. The first bin (with real data) is centered at 0 Hz. The next bin is centered at 750 Hz, and so on. The
last bin (with real data) is centered at 24 kHz.

The filterbanks also contain built in decimation. The outputs of the analysis bank represent the decimated outputs
of bandpass filters. The decimation factor equals the block size, that is, K/2. Continuing the example from above,
the sample rate of the system is 48 kHz and the block size is 32 samples. Thus, the sample rate of the frequency
domain subbands is 1500 Hz. see this by showing the sample rate on the wires.

 THEORY

This section describes more of the mathematical theory behind the filterbanks. The design of the filterbanks was
based primarily on chapter 7 of the book Multirate Digital Signal Processing by Crochiere and Rabiner. This is an
excellent and very readable introduction to the subject of filterbanks. Our description follows the derivation found
in this book.A classical filterbank uses a time domain window function followed by an FFT as shown below:

Time >

Input samples <

Block of K input samples

Block of K input samples

Block of K input samples

K-point Window

K-Point FFT

<~

Block of K frequency domain samples

Block of K frequency domain samples

Block of K frequency domain samples

The length of the FFT equals the length of the window function. In many cases, the window function is a raised
cosine, or Hanning window:

Page: 66 of 163

DSP Concepts Audio Weaver Module User’s Guide

Hanning window

0 50 100 150 200 250 300

The input blocks of the filterbank are overlapped in time. There are many ways to describe the amount of
overlapping. The terminology “50% overlap” indicates that from FFT to FFT, K/2 new input samples are made. If
there is “75% overlap” then there are K/4 new samples for each FFT computed. In this discussion, the phrase
“block size” is used to describe how many new samples arrive each time. This approach is also referred to as a
short-term Fourier transform (STFT).

There are two different ways of looking at the output of the STFT analysis bank. On is to segment the input signal
into blocks which are windowed and then FFT’ed. The output of the analysis bank thus corresponds to frequency
spectra. On the other hand, a careful study of the analysis bank shows that it is in effect implementing a set of
parallel bandpass filters as shown below.

\ J

\ 4
47
z

h[n]

\ J

Y
47
z

h[n]ejZm/K

> h[n]ej4zzn/K

\ 4
47
z

o h[n]ejZ;r(k—l)n/K . # M >

Figure 5. Analysis filterbank implementation as a parallel set of bandpass filters and decimators.

The input signal is filtered and then decimated by the block size M. The filters are all related by the mathematical
expression

hkn=h0nej2rkn/K

Page: 67 of 163

DSP Concepts Audio Weaver Module User’s Guide
where h[n] is the prototype lowpass filter and all other filters are related to the prototype filter by complex
modulation. In the frequency domain, the filters are shifted versions of the prototype filter

Hkw=HO0w—2nk/K

For example, if a Hanning window is used as the prototype filter,

hn=121—cos2nnK—1

then the frequency response Hy(w) for K=32is

! ! ! ! ! ! ! ! !
I . S
] e I S

E=117:] P N - NS S SN ISR SRS SN SO
m 1 1 1 1 1 1
™ : : : : : :
= : ! ! ! ! !
L S LTs s
e e
q i | i i i | |
0 005 01 015 02 025 03 035 04 045 05

Mormalized Frequency

Figure 6. Frequency response of a 32-point Hanning window. The graph shows normalized frequencies in the range 0 to 1.0 which
corresponds to 0 to 7 radians/sample.

Subsequent bins are spaced by 2w /32 (or 1/16 when viewed as normalized frequencies) and the first 4 bins are
shown below:

AL

R WEAVE Page: 68 of 163

Audio Weaver Module User’'s Guide

DSP Concepts

O S

apnuubiely

03 03 04 D045 045

0.25

0.2
Marmalized Fregquency

Note that the prototype filter is quite wide in the frequency domain and there is significant overlap between

neighboring bins. Not only does bin k overlap with bin k+1, but also with k+2 and k+3. If a decimation factor of 16 is

picked, then aliasing will start at normalized frequency of 1/16 as shown below. The prototype filter has only

attenuated the signal by 0.5 and severe aliasing will occur.

Page: 69 of 163

)

ALL)

AT

Audio Weaver Module User’'s Guide

DSP Concepts

e

PO i

1
D8}-----

apnuubiely

03 04 D045 045

0.3

0.245
Marmalized Fregquency

Figure 7. Frequency response of a 32-point Hanning window overlayed with a rectangle indicating where aliasing would occur if the filter

output is decimated by a factor of 16.

If the decimation factor is changed to 8, then aliasing begins at a normalized frequency of 1/8 SR and the filter has

attenuated the signal. However, with a decimation factor of 8 the 32 sample Hanning window only advances 8

samples each time and this corresponds to an overlap factor of 75%.

Page: 70 of 163

)

ALL)

Audio Weaver Module User’'s Guide

DSP Concepts

e

[

g gy

[T

[P R —

[P I U R —

D8}-----

apnuubiely

E I,
04 f------

02 025 03 03 04 045 045

Marmalized Fregquency

0.1

0.05

Figure 8. This time the rectangle indicates where aliasing occurs for a decimation factor of 4.

Is there a way to achieve high decimation while at the same time avoiding aliasing? This brings up the weighted

overlap-add filterbank (WOLA). The block based derivation from Crochiere and Rabiner avoids aliasing while

supplying high decimation. The analysis filterbank is implemented as shown on the next page.

Page: 71 of 163

)

ALL)

AT

DSP Concepts Audio Weaver Module User’s Guide

Input samples

Block of KxN input samples ‘

‘ Block of KxN input samples ‘

‘ Block of KxN input samples ‘

KxN-point Window }—» X

y
‘ ‘Windowed Data

—
P
+
Time

+ > alias to

length K

K-point
signal

K-Point
FFT

< =

Freq
Data

The main difference is that the prototype filter is N times longer and that after multiplying the input signal, the
output is time aliased to the FFT length. Time aliasing is a standard property of the FFT. Suppose an input signal is
given: r[n] of length KN. Time alias this to a shorter signal x[n] of length K

xn=p=0N—1r[n+pK]

The FFT X[k] of x[n] is related to the FFT R[k] of r[n] by subsampling
X[k] = R[kN]

That is, X[k] contains samples of R[k] spaced by N bins.

The advantage of using a longer prototype filter is that it allows us to get better frequency separation between
bands. Consider the designs shown below with N=1, N=2, and N=4. The filters get progressively sharper in
frequency and for N=4, the passband of the filter falls within the rectangle indicating the aliasing region for a
decimation factor of 16. Thus a high decimation factor is achieved while avoiding high amounts of aliasing.

Page: 72 of 163

DSP Concepts

Audio Weaver Module User’'s Guide

Magnitude

0.5

o
(a7]

=
e

0.2

0.1

0.14

02 02 03
Mormalized Frequency

03 04

Now let’s plot the frequency response of the first 4 filters in the filterbank assuming an FFT size of 32 samples, a
window length of 128 samples, and a decimation factor of 16.

ALY)

Page: 73 of 163

DSP Concepts Audio Weaver Module User’s Guide

08 N Y M S L —

_________1._________
'
'
]
]
'
|

Magnitude
=
(]
|

A7) O Y N S S S CANOE S S S
L e A S Rl o R A S REER S S
. I
25 03 035 04 045 045

Mormalized Freguency

Figure 9. First 3 subband filters for the WOLA filterbank with K=32, N=4, and a decimation factor of 16.

When N is increased to a very high number to achieve a decimation factor of 32, the result is a critically sampled
filterbank with no net increase in data. This limit can be approaced, but never achieved in practice. With realizable
filters, a filter will always overlap its immediate neighbors. In Audio Weaver, a decimation factor of K/2 is used and
the filterbanks are oversampled by a factor of 2. There is a net doubling of the data rate, but this is important
because it decouples the subbands and allows them to be modified without introducing further aliasing distortion.

Recent theory of filterbanks has been focused on critically sampled filterbanks. These filterbanks find use in audio
compression and since the goal in compression is to reduce the overall data rate, it is important not to oversample
and introduce more data in the subband representation. However, the operations performed on subbands in audio
codecs are very gentle compared to what is possible with our WOLA filterbanks. In audio compression, the goal is
for the output to equal the input. In Audio Weaver processing systems, the focus is to be able to make gross
changes to the subbands without introducing objectionable aliasing artifacts. This requires a fundamentally
different approach. Furthermore, if the algo calls for a frame overlap add and overlap save convolution in a
filterbank framework, oversampling is needed. In general, in order to perform subband modifications of audio
signals without introducing objectionable aliasing distortion, some amount of oversampling is required.

AW

AUCED WEAVER

Page: 74 of 163

DSP Concepts Audio Weaver Module User’s Guide

éALIASING PERFORMANCE OF THE WOLA FILTERBANKS

As noted above, the filters in the filterbanks are not ideal and introduce some amount of aliasing. The amount of
aliasing depends upon the stopband attenuation used in the design of the filters. This section provides details on
the amplitude of this aliasing noise. To test this, use the system shown below:

WoLA WOLA
Forward d - o =
e ; Inverse RMs Br—T Dvide br— | BE=
{Analysis) Fitterbank ,— ==
(Synthesis) — —1—
WOLAANalysis1 P;}‘F; | [gmdﬂ Meter1
; : Z 2 ivide] .
WOLAAalysis] WOLASynthesist = 5ImmﬂngT[ime:l1000 o] [Divide] o
numBands: 255 [WOLASynthesig] u meterType: VUMeterBlock [12]
attenuation: 50.0 dB numBands: 256 [Subtrac] |
latency: 896 samples attenuation: 50.0 dB
7 latency: 896 samples |
White1 Aus B
[WhiteMNoise] N
range: 1
Z RMS2
[RMS]
Delay1 smoothingTime: 1000 msec
[Delay]
maxDelay; 10000 samples
currentDelay: 895 samples

Analysis and synthesis filterbanks are placed back-to-back. The input is white noise, the output is subtraction of the
inputs while compensating for the delay through the filterbanks. Comparing the energy at the input to the energy
of the residual noise provides an indication of the level of the aliasing components. The following table shows the
aliasing level and latency as a factor of the stopband attenuation of the prototype low pass filter. In the test, an

FFT size of 256 samples was used with a resulting blockSize of 128 samples.

Stopband Measured
Attenuation Aliasing Latency Latency
(dB) Noise (dB) (samples) (blocks)
30 -28 384 3
40 -39 640 5
50 -50 896 7
60 -61 1152 9
70 -61 1152 9
80 -78 1408 11
90 -87 1664 13

Keep in mind that the aliasing components are linearly related to the input signals. That is, reducing the level of the
input signal by 20 dB results in the level of the aliasing components dropping by 20 dB. Thus, the aliasing level is
more similar to a signal to noise ratio (SNR) rather than total harmonic distortion.

éSUBB/—\ND SIGNAL MANIPULATION

AL

UG WEAVER

Page: 75 of 163

DSP Concepts

Audio Weaver Module User’'s Guide

Part of the beauty of these filterbanks is that it is possible to manipulate the signals in the subband domain. For

example, if scaling the subband signals as shown below, the result will be an equalizer with linearly spaced

frequency bins.

numBands: 256
attenuation: 50.0 dB

White1 latency: 896 samples,

[WhiteMNoise]
range: 1 -N

RMS1

1

WOLA WOLA
Forward Inverse t
Fiterbank Fiterbank
(Analysis) (Synthesis)

WOLAARalysis1 WOLASynthesis1
[WOLAARalysis] [WOLASynthesis]

numBands: 256
attenuation: 50.0 dB
latency: 896 samples|

Sub1 [RMS]

Z

Delay1

[Drelay]
maxDelay: 10000 samples
currentDelay: 896 samples

RMS2
[RMS]
smoothingTime: 1000 msec

Divide DJ— -

[Subtract] smogthingTime: 1000 m5n|lc
|
|

RMS B—— — — — —]

Divide1

[ivide] meterType: VUWeterBlock [18]

Another nice property of the WOLA filterbanks is that they have built in smoothing. That is, making an

instantaneous gain change to one of the subband signals then the net effect at the output will be smooth. This is

because the synthesis bank has built in low pass filters in each subband and these smooth out discontinuities.

The FIR filter example can be taken further. The example above had only a single gain within each subband. What
if the goal is to have more frequency resolution? Place FIR filters into each subband. A longer FIR filter would
provide more resolution within that particular frequency band. Consider the following example. A filterbank has an
FFT size of 64 samples and is operating with a decimation factor of 32. If the input is 48 kHz then each subband has
a sample rate of 1.5 kHz. If an FIR filter of length 500 samples is placed in the DC subband (bin k=0), then this yields
an effective frequency resolution of 3 Hz within this band. The amount of computation needed to implement this

filter is approximately 1500 x 500 = 0.75 MIPs. High resolution is needed in audio applications at low frequencies.

For higher frequencies, reduce the lengths of the FIR filters and achieve something close to “log frequency

resolution”. By proper design of the subband filters, designing phase response becomes simple.

Any of the Frequency Domain modules which operate on complex data operate in the subband domain. Audio

Weaver also provides a special set of “Subband Processing” modules that start with the “Sb” prefix. These modules

replicate some of the standard time domain modules but the operations occur separately in each subband.

=
Artece
Lk

SbAttackRelease

SB Attack
Release

Attack and release envelope follower

(real data only)

Page: 76 of 163

DSP Concepts Audio Weaver Module User’s Guide

- SbDerivative Derivative (real data only)
SB Dervative
h':m
SbComplexFIR Complex FIR filter
5B Complex
FIR
SbNLMS Normalized LMS adaptive filter
SB NLMS
el Performs smoothing across
ek SbSmooth
SB Smoath subbands (real data only)
RMS with settable time constant
SbRMS
SE RMS (real data only)
SbSOF Second order filter (real data only)
SB SOF
= Subdivides the spectrum into
I SbSplitter overlapping regions. Similar to a
S8 Spliter crossover

 SYNTHESIS FILTERBANK

The synthesis filterbank takes the subband signals and reconstructs a time domain output. Error! Reference source
not found.Remember that the analysis filterbank can be considered to be a parallel set of bandpass filters and
decimators. The synthesis filterbank uses a the inverse of this with upsamplers, filters, and adders. The upsamplers

AL

UG WEAVER

Page: 77 of 163

DSP Concepts Audio Weaver Module User’s Guide

take the decimated subband signals and return them to the original sampling rate by inserting M-1 zeros between
each sample value. In the frequency domain, upsampling creates copies of the input spectrum at multiples of
2m/M and the filters remove the high frequency copies.

e dwe o
5 ? M > f[n]ejZnn/K
— > f M > f[n]ej“”"/K
[J
[J
[J
? M o f[n]ejZE(k—l)n/K

Figure 10. Synthesis filterbank implementation using upsamplers and bandpass filters.

For efficiency, the synthesis filterbank is implemented using an inverse FFT and periodic replication. As in the
analysis filterbank, the window function f[n] corresponds to the impulse response of the prototype lowpass filter
used in subband k=0.

Replicate M times

‘ K-point ‘ K-point ‘ K-point ‘ K-point ‘

'

‘ KxN-point synthesis window

‘ K zeros ‘ Previous state ‘ ‘ Block of KxN samples
P
Use Next Time ‘ K-point ‘
‘ \—b K output samples

Figure 11. Synthesis bank implemented using an inverse FFT followed by windowing and overlapping.

AL

UG WEAVER

Page: 78 of 163

DSP Concepts Audio Weaver Module User’s Guide

GAINS

Scaler modules multiply the input signal by a constant value. think of scalers as gain controls or faders.
There are many different types of scalers and they have the following characteristics:

1. Smoothed or unsmoothed
2. Linear or dB gains
3. Single gain applied to all channels or individual gains per channel

All scalers support multichannel data and arbitrary block sizes. The scaler modules with a single gain
support multiple input and output pins and the number of pins is specified as a constructor argument.

If the scaler has individual gains per channel, then the initial number of channels can be specified as a
constructor argument. This makes it easy to enter initial gains before completing the entire block diagram.
Thereafter the number of gains is updated by pin propagation. For these modules, the gain values are
specified using an array. The module to use for multiple gain channels is the General Purpose Vector
Scaler. It supports smoothing/non, linear/dB, and multichannel gain control.

In unsmoothed scalers the gain change takes place immediately and may result in an audible “pop” due to
the discontinuity. To avoid this, use a scaler with built-in smoothing instead. The following list explains the
differences between the deprecated scaler modules, which each had its own function. THESE MODULES

Page: 79 of 163

DSP Concepts Audio Weaver Module User’s Guide

ARE OUT OF DATE, USE GENERAL PURPOSE SCALER. This list is here to keep documentation for the
deprecated modules, whose documentation is similar to the fract32 scaler modules.

Single linear gain

Scaler
m Unsmoothed

Scaler

Multiple 1/0O pins

Single linear gain

[>| ScalerSmoothed
Smoothed

Scaler
Smoothed

Multiple 1/0 pins

Single dB gain
[>| ScalerDB 8 &
i Unsmoothed
Multiple 1/0O pins
Single dB gain
w ScalerDBSmoothed
Smoothed
Scaler DB
Smocthed
Multiple 1/0O pins
[>| ScalerN Per channel linear gains
Scaler N Unsmoothed
M ScalerNSmoothed Per channel linear gains
Ssmciilrn:d Smoothed
@I ScalerNDBSmoothed Per channel dB gains
Scaler M DB
Smoothed Smoothed

AL

UG WEAVER

Page: 80 of 163

DSP Concepts Audio Weaver Module User’s Guide

For the above modules, the gain to apply is specified by an inspector variable. The module library also has two
controllable scalers. For these modules, the gain to apply is taken from the first input pin. There are linear and dB

variants and both have built-in smoothing.

[>| ScalerControl
Controllable scaler with linear gain
Scaler
Control
w ScalerDBControl
Controllable scaler with dB gain
Scaler DB
Control
e .
Smoothing scales between +1 and -1
i Invert)))
Invert Phase and provides a phase inversion.
ScaleOffset Multiplies the signal by a fixed scale
Scale Offset factor and adds an offset.

These modules are frequently used to invert or add an offset to a signal by setting the scale factor equal to 1.0.

This is easier than using separate DCSource and Adder modules.

MUTES

Several other modules exist which do smoothing scaling of signals between fixed values. The MuteSmoothed
module scales between 0 and 1 and the Invert module scales between +1 and -1. There is also a MuteNSmoothed
module which is designed for multichannel signals and allows the individual mute control for each channel.

Smoothly mutes and unmutes a
MuteSmoothed y

— signal.

AL
Page: 81 of 163

UG WEAVER

DSP Concepts Audio Weaver Module User’s Guide

Multichannel mute with separate
MuteNSmoothed controls for each channel. Similar to
Mute N

ScalerNSmoothed.

The SoloMute module allows muting of all channels except one (like soloing on a soundboard). The SoloMute

module can have multiple input pin, where each input can have multiple channels. Or, if it has a single input pin,
the soloing functionality is applied to individual channels.

Similar to MuteN except that it
SoloMute includes the ability to solo or listen to
Solo Mute

only 1 channel.

CROSSFADER

The Crossfader module takes in two sources and smoothly varies between the two input sources. It also has energy
levelling during the crossfade based on either a Linear scale (amplitude) or the energy of the signal (rms). This

module has a control pin that varies between 0 and 1, correlating to the next two input pins. It is limited to two
channels.

GENERAL PURPOSE SCALERS

As mentioned earlier, the general purpose scaler supports smoothing, dB and linear gain values, optional input pin,

and even pin counts. If a multichannel-multivalued gain is needed, the General Purpose Vector Scaler supports up
to 256 simultaneous channels.

AL

UG WEAVER

Page: 82 of 163

DSP Concepts

Audio Weaver Module User’'s Guide

|TABLE OF MUTE MODULES

Module Name Input type supported Smoothing Per Channel Control
Mute N Smoothed Floating Point Yes Yes

Mute Smoothed Floating Point Yes No

Mute Unmute Floating Point Yes No

Solo Mute Floating Point Yes Yes

Synchronous Mute Floating Point Yes No

TABLE OF GAIN MODULES

Input type supported Smoothing dB orLinear Units Gain input Pin Per Channel Gain

Module Name

Cross Fader

General Purpose Scaler
General Purpose Vector Scaler
Invert

Scale Offset

Scale Offset Int32

Scaler Control

Volume Control

Volume Control (Precise)

Floating Point
Floating Point
Floating Point
Floating Point
Floating Point
Int32

Floating Point
Floating Point
Floating Point

Yes
Yes
Yes
Yes
No
No
Yes
Yes
Yes

Linear and Energy No

Both
Both
Linear
Linear
Linear
Linear
dB
dB

No
Optional No
No Yes
No No
No No
No No
Yes No
No No
No No

AL

UG WEAVER

Page: 83 of 163

DSP Concepts Audio Weaver Module User’s Guide

LOGIC

CONTROL SIGNALS AND BOOLEAN LOGIC

Control signals are defined as having a block size of one. This useful for reducing the computational load when only

a single value is needed. Wires holding control signals are shown as dashed lines (7"~ M).

To illustrate the use of control signals we’ll build up a Fletcher-Munson equal-loudness contour. This guide is not
intended to go into depth on topics of audio processing, but in simplest terms, this system adapts frequency as the
level of audio drops. The human ear perceives both the low- and high-range frequencies dropping off more quickly
than the mid-range frequencies. A common method for dealing with this in audio processing is to boost the bass
and treble frequencies as the volume drops to create what is called an “equal-loudness contour,” or a “Fletcher-
Munson curve.” This can be achieved by a filter which varies based on the desired volume level. This example will
demonstrate the process, including the use of several control signals.

The complete system (shown below) has a few key points. As the volume is reduced at the DCSource, the levels of
the bass and treble frequencies will be boosted so that they sound as though they are dropping off at the same
rate as the mid-range frequencies. Note the dotted lines representing all the control signals. This implementation
is also computationally efficient. The control signals have a block size of 1 and do not require much computation.
The main processing is performed by the Scaler and two SOFControl modules.

[IR
pesoureav2t | | |_L " 1
pCsourcevZ] | | | 1 I 1
value: 1 |
| L 4 H— | Sink2 Sink1
[Sink] [Sink]
| EaaEmisanain .
Tablelnterp? I Tvpe
| [Ta blelntefp] L | Convert B
Type Linear fregPin Tablelnterp2 freapi S¥5_out
Cunvertr; | 4 gut of 8 points AT rl'ab_lelnterp] o Irearn SYS_toFract Chann_els_f 2
SYS_in [inear || - . BlockSize: 32
| R A [TypeConverzion] R
Channels: 2 | 4 oufjof 8 points [[MUTED] Sample Rate: 43000
BlockSize: 32 C 1 -foflast ; Data Type: fract32
: [TypeConversion] |_ float —= fract32
Sample Rate: 48000 fracta? —» float b
Data Type: fract32 = [SOF1
1> [SOFContro] SOF2
Bypass [SOFControl}
Scaler! smoothingTime: 10 msec Bypass
[ScalerDBControl] smoothingTime:|10 msec
smoothingTime: 10 msec

The VolumeSetting module is a DCSource which outputs the gain setting, in dB; this is a control signal and is drawn
as a dotted line. When configuring the VolumeSetting using module properties set its blockSize and number of
channels to 1.

The first step is to reduce the signal level by VolumeSetting. This is accomplished using the ScalerDBControl
module. This module takes its gain setting from an input pin rather than from an inspector and allows for a control
signal-dependent gain.

AL

UG WEAVER

Page: 84 of 163

DSP Concepts Audio Weaver Module User’s Guide

[fﬂ Simple dB scalar; gain controlled by
ScalarDBControl

Scaler DB control signal input
Control & P

In this example it will be used to allow a DC source to adjust the overall volume. Thus begins the system as shown
below:

® _ -l— —
DCSourcev21 | |
[DCSourcevz] |
value: 1
| L
L. Tvpe |
Convert |
SYS_toFloat |
[TypeConversion]
fract32 —> float g
dB
Scalert
[ScalerDBControl]
smeothingTime: 10 msec

Another example of a control signal module is the SOFControl module.

SOF Control Second-order filter with gain
ontro
SOF Cortrol determined by control signal input

AL

UG WEAVER

Page: 85 of 163

DSP Concepts

The SOFControl module allows for a
control signal to adjust parameters
(frequency, gain, or Q) of a second order
filter. The control parameter(s) are
selected in the module’s module
properties. In this case, only the gain is
controlled as shown to the right:

Audio Weaver Module User’'s Guide

Module 50OF1

Varables | Arguments | properties | Buid |

Mame Value

freqgPin true Is the filter has frequeny pin
gainPin false Is the filtter has gain pin

qPin false Is the filter has Q pin

In this example, this will allow for a volume-dependent bass (and treble) boost. The SOFControl module will take in
the audio from the Scalar module as one of its inputs (the lower input pin):

SOFL =
Q gain
(dB)
1 0
Volume
[DCSourceV2]
m- |- value: -28.0074
15 -
10 -
- - |t Tvpe
z Ccln\.fert[}
0 3
S5-f- SY5S_toFloat
10 - [TypeConversion]
fract32 —» float
_15 -
_ZD -
filterType
Eypass -

gainPin
M F
[

Scalert BassBoost
[Scalerv] [SOFControl]
gain: 0 dB Peak EQ

smoothingTime: 10 meec freq =250 H=z
isDB: 1 gain = from pin
a=1

smoothingTime: 10 ms

Since the purpose of this filter is to boost bass frequencies, a filter type of “Peak EQ” and a frequency of 30 Hz are
selected in the module’s inspector. The upper input pin of the SOFControl module requires a control signal input.

This control input will originate from the DCSource controlling the volume. To achieve the equal-loudness contour,

the bass must be boosted in relation to the volume. The mapping between the volume and the bass boost is

accomplished with the Tablelnterp module:

Table
Interpolation

Tablelnterp

Second-order filter with gain
determined by control signal input

AL

UG WEAVER

Page: 86 of 163

DSP Concepts Audio Weaver Module User’s Guide

The Tablelnterp module allows the user to map out the intended input-output relation visually and interpolates
between given points to produce a continuous function. In this case, the relation shown below will be sufficient:

B Tablelnterpl [= @] =]
40 T T T T T T T — Interpolation Method——
40 : : : : : : :
S R I Locer -
e R S R R T
i i i i i i : — Snap Grid
£ NUUEE NN RN USRS SOOI PR SO S 7] Enabie x
H 1
b ECERE T TLEPLEF CEREPLH P FRERPEES [¥] Enable ¥
e R A e e e T Show
H B H H H H |:| Point Coordinates
£ R T S [] Line Siopes
— Axis Grid
T IO SO SO IS O S
Shuw
X Spacing
3 U SN SN ORI S
¥ Spacing

0 H H H H H H H
-80 -70 -60 -50 -40 -30 -20 -10

At full volume (0 dB) there is no bass boost. As the signal level drops more boost is progressively applied. At -80 dB
28 dB of boost is applied. Also note that the table interpolation both takes in and outputs a control signal. Only a
single value is translated through the table’s function at a time.

A sink module can be appended to the output of the table interpolation to show in real-time the computed gain.
Note that when the sink module is given a control signal as input, it will only display the single value, rather than
the graph it normally displays.

[IR
| T il
DCSourceV21 | | ’_L = _'L
[oCsourcevZ] | | | [
value: 1
| L [— | Sinkz
| [Sink]
| Tablelnterpd |
[Tableinterp] .
Ll Type Linear I_ freqPin
Convert | 4 out of & points. My
SY'S_toFloat |
[TypeConversion] |_
fract32 —= float SOF1
[SOFCentrel]
Bypass
Scaler1 smoothingTime: 10 m:
[ScalerDBControl]
smoothingTime: 10 msec

AL

UG WEAVER

Page: 87 of 163

DSP Concepts Audio Weaver Module User’s Guide

This has accomplished the boosting of the bass frequencies, and the same strategy can be employed to boost the
treble frequencies. This SOFControl will be set to alter the treble frequencies, with a filter type of “Shelf High” and
a frequency of 6000 Hz:.

This Tablelnterp will use a slightly different relation but will achieve fundamentally the same function — boosting
the level at lower volumes:

— Interpolation Method——

Linear v

— Snap Grid
[Enakble X
01

[] Enable v
01

— Hide / Show

[] Point Coordinates
|:| Line Slopes

— Auxis Grid.
Show
X Spacing

 Spacing

Reset Poinis to Range

AL

AUCED WEAVER) Page: 88 of 163

DSP Concepts Audio Weaver Module User’s Guide

_BOOLEAN SIGNALS

A Boolean signal has only two possible values, 0 and 1. Boolean data is useful for controlling systems. Boolean
signals are represented using 32-bit integer values. Audio Weaver includes several modules that perform logical

operations on Boolean signals.

Inverts a Boolean signal (logical NOT
Booleaninvert

Boolean gate)

Inwert

=ha LogicAll Resolves to 1 if and only if all its inputs
Logic Al are non-zero (logical AND gate)

j} LogicAny Resolves to 1 if any of its inputs are
Logic Any non-zero (logical OR gate)

By default the LogicAll and LogicAny modules do not have any output wires; they store the output in an internal
variable (“.result”). By checking the box next to “outputValue” in the module properties, an output pin can be

created.

Ela
. Performs binary operations on Boolean
Lodic B LogicBinaryOp
agic Binany data
Op

The LogicBinaryOp module allows the user to select a logical operation (logical AND, OR, and XOR). It takes two
control signals as input and outputs one wire with the computed Boolean value.

Source module with Boolean data
BooleanSource

Boolean output

Source

AL

UG WEAVER

Page: 89 of 163

DSP Concepts Audio Weaver Module User’s Guide

The BooleanSource module is a source module that supplies a buffer of Boolean data. As with any source module,
the number of channels, block size, and sample rate are user-specified in the module properties.

LogicCompare Compares input values
Logic Const g P P P
Compare
.ﬂ LogicConstCompare Compares input to constant
Logic Const g P P P
Compare

The LogicCompare module performs one of many possible comparisons on two input values. In its Inspector is a
drop-down menu of the possible comparisons: EQUAL, NOTEQUAL, LESSTHAN, LESSOREQUAL, GREATERTHAN, and
GREATEROREQUAL.

ComparzConstl @

compareType constValue

EQUAL - 0
—

NOTEQUAL

LESSTHAN

LESSOREQUAL

GREATERTHAN
GREATEROREQUAL

The module performs the comparison and outputs 1 if the comparison resolves to true and 0 if it resolves to false.

The LogicConstCompare module functions the same way, except it compares a single input to a constant, user-
specified value.

A simple example of the use of the Boolean signals is shown below. This system selects the louder of the two input
channels and outputs it on both channels. To accomplish this, the RMS module measures the levels of the two
input signals and outputs control signals. These control signals are then fed into a LogicCompare control, set to
LESSTHAN comparison type. Its output controls the index of the MultiplexorFadeControl module which selects the
louder of the two input channels.

AL

UG WEAVER

Page: 90 of 163

DSP Concepts

Audio Weaver Module User’'s Guide

S5
Channels: 2
BlockSize: 32 SYStorloat

ample Rate: 45000 [1YPECOnversion]

ata Type: fractsp T8ctaZ > float

Type
comvert”]

RMS [— .
RHST ‘
[RMS] _
‘smeothingTime: 1000 msec —pin Z EEEEEEN
i in |
+ Compare1
RMS [— [LogicCompare]
compareType: EQUAL 0]
RNSZ
[RMS]

'smoothingTime: 1000 msec

\
\
\
\
\
L bem
-

Deint1
[Deinterieave]

Mutiplexor1

[Mutiplexor'2]
index: 0
smoothingTime: 10 msec
fadeTime: 10 msec

+o—

Interleavel
Interizave]

Type
Convert
SYS_out

Chanrsls: 2
SYS_tofract BlockSize: 32

[MypeConversion] oo :
ple Rate: 4300
float —= fract32 “naia Type: fracta2

If RMS1 < RMS2 then the LogicCompare module outputs 1 and the louder right channel is selcted; if RMS1 >=
RMS2 then the module outputs 0 and the louder left channel is selected.

AL

AUCHD WEAVER

Page: 91 of 163

DSP Concepts Audio Weaver Module User’s Guide

 PARAMSET AND PARAMGET

Control signals can be used to adjust parameters of modules. This can also be accomplished with the Param Get
and Param Set modules. These are found in the Misc. folder. The example from the previous section can be made

even cleaner by using ParamSet.

1 RMS — —|
RM32 |
[RHS])
thingTime: 1000 msecl_ —=in 2 Param Set
— —in
| Compare1 ParamSet1
[LogicCompare] [ParamSet]
1 RHS [compareType: EQUAL [0] Multiplexori .index
Update on change. Call Set()
RMS1
[RMS]
ingTime: 1000 msec
: £ -
N B ype ~
HW [= — T
Convert ype N
z =+
Channels: 2 SYS_out
BlockSize: 32 SY3_tofloat e Channe’s: 2
Sample Rate: 48000 [TypeConversion] I C—U Fac] BlockSize: 32
Data Type: fract32 B | Worak S¥S_deint Multiplexor1 . ﬂii?f:;e:gs‘tlgzn Sample Rate: 48000
[Deinterieave] [Muttipléxtory2] SYS_inter Data Type: fract32
indek: 0 [interleave]

smoothingTime: 10 msec
fadeTime] 10 msec

The output of the LogicCompare module is fed straight into the ParamSet module, which in turn sets the index of
the MultiplexorFade module. Note that in this version, the multiplexor does not have to be a control module.

Just like ParamGet, the target parameter is specified in the module properties, with “name of the
module”.“parameter to be set”. Also specify the data type of the input wire. In its Inspector, the ParamSet module
allows the user to change the when the parameter update occurs using the setBehavior drop-down menu:

ParzmSetl IEI

setBehavior

OnChangeDeferredSet |

The choices available are:

AlwaysNoSet — Always update the variable in the instance structure. Do not call the module’s set function.

AlwaysDeferredSet — Always update the variable in the instance structure. Call the module’s set function
in the deferred processing thread.
OnChangeNoSet — Only update the variable when it has changed. Do not call the module’s set function.

AL

UG WEAVER

Page: 92 of 163

DSP Concepts Audio Weaver Module User’s Guide

OnChangeDeferredSet — Only update the variable when it was changed. Call the module’s set function in
the deferred processing thread.

OnChangelnstantSet — Only update the variable when it has changed. Then call the module’s set function
from the real-time thread. Change occurs immediately.

The many options allow for optimization of computational efficiency by performing the change at a time when it is
most appropriate for the system. In most cases, the OnChangeDeferredSet is the most appropriate.

MATH

ADVANCED MATH

The advanced math modules include the functions see to the right. = ' | Advanced

The Convolve module is similar to the FIR module, with the property that it can canv | Convolve
ignore signal tails. It is normally not used for filtering. Its shape parameter acts as a
truncation control. When the user selects shape 0, no truncating occurs, outputting
normal convolution. If the user selects shape 1, the module will ignore the first N/2
samples of the output, then display the next N samples, followed by ignoring the last

N/2 samples. This is useful for statistics between two data sets. This is essentially == | Integral
partial correlation.

Cor | Correlate

w | Derivative

The Correlate module is similar to the convolve module, except it differs in the order of the output.

Derivative and Integral modules compute discrete derivative and integral equations respectively:

y[n] = 1/dt * (x[n] - x[n-1])
where dt is the time step, dt = 1/SR.

y[n] = dt/K * sum(x[0] .. x[n])
where dt is the time step, dt = 1/SR and K is a gain.

BASIC MATH

These modules perform basic math operations.

Adder
Adds signals

AL

UG WEAVER

Page: 93 of 163

DSP Concepts Audio Weaver Module User’s Guide

Subtract
Subtracts signals

Adder

IEI Multiplier
Multiplies signals

Subtract

® Divide
Divides signals

Muttiplier

Reciprocal Computes 1/x

Divide

The Adder and Subtract module by default have two input pins. Additional pins can be specified on the module
properties. For the Adder, all inputs are summed together. For the Subtract module, the last input pin is subtracted
from the others. The Adder and Subtract modules both handle signals with multiple input channels.

The Adder module has an additional property that can be selected on the module properties:

Reciprocal

When oneChannelOutput is checked then the output will be mono and all input channels will be summed together
to form the output. In this mode, the input pins can have different numbers of channels. By default,
oneChannelOutput is unchecked and all input pins have to have the same number of channels and the output will
be multichannel as well. A useful way of using the Adder is to sum together the left and right components of a
stereo signal. The traditional way is to use a Deinterleave module

Page: 94 of 163

DSP Concepts Audio Weaver Module User’s Guide

Meadule: 5Y5_deint

Arguments | properties | Buid |
Mame Value

nurnQut 2 MNumber of output pins

Or, use an Adder module with the number of input pins set to 1 and oneChannelOutput checked:

SY'S_deintt Addi1
[Deinterleave] [Adder]
oneChannelQutput: 0

lodule: Addl

lArguments | properties | Buid |
Mame Value

numin 2 Mumber of input pins

oneChannel0... |W vi Forces all channels to be summed to a single output channel
false
T —

Page: 95 of 163

DSP Concepts Audio Weaver Module User’s Guide

In addition to these basic math functions, the Math folder has modules corresponding to the functions in the
standard C math.h library. These modules will be skipped, but here is a preview:

B ! math Loat0
! | Advanced Log2
Nl Modf
= ! | Basic
ST ® Multiplier
X
I I Abs Pow
+ Adder Powl0to X
+ Adder Int32 Reciprocal
2 Remainder
e | Ceil
Round
onas | Diyvide
e | Sign
na | Floor IE‘ Square
T #| Square Add
reo | Friod . g
IE‘ Subtract
Frexp
IE‘ Subtract Int32
uee | Ldexp Sum Diff
= | Log Sum Dff Int32

DB CONVERSION

AL

UG WEAVER

Page: 96 of 163

DSP Concepts Audio Weaver Module User’s Guide

To convert to and from dB10 and dB20, this folder hosts Approx and exact modules. The Approx modules are less
cpu intensive, and less accurate. To be clear, the UndB modules convert from dB to linear scaling.

= “ DB

o
[=x
—
=]

o | DB10 Approx

Q
[=x
5]
=2

Db20 Approx

[
=]

(=9
=x
=
=2

A o
30 8

Undb10 Approx

=F

i

=
=]

(=9
=
Pt
=1

HIH

e | UNdD20 Approx

|LOOKUP TABLES

= l | Math
l | Advanced
l | Basic
ll DB
=] l | Lookup Tables

/‘/\ Table Interp

Table Interp2d

J‘/\ Table Lookup

Tibk

e | Tahle Lookup Int Float

Ink Float

Tibk

wis | Table Lookup Int Int

I ik

TanFca

wem | Tywo Piece Interp
1)

AL

UG WEAVER

Page: 97 of 163

DSP Concepts Audio Weaver Module User’s Guide

Tablelnterpl =]
f\A N a 4+ Interpolation method
Snap grid
Tablelnterpd ["]Enable
[Tableinterp] 2| o1
Linear
4 pgut of 8 peints. LB
0.1
2 Hide / Show
[Point coordinates
The Table Interp module uses a table e dopes
with clickable/movable points to discern how the input values 1 B
T T T , | [@show
scale into the output pin. For data in between the points, the 2 E 4
S . . . 4
scaling is interpolated either linearly or cubicly.

Module: Tablelnterp2dl

Array: table Argumentsl Properties | Build |

["] Expose symbol [Load from ﬁle...] [Save to file... Apply

Tablelnterp2d1
[Tableinterp2d]
nFoints: 5

Min Max Step
2d Interpolation Lookup table

1 2 3 4 5
1 1 1 1 1 1
Table Interp2d takes in 2 1 1 1 1 1
. . 3 1 1 1 1 1
a vector input (x and y pins) and scales them a a 2 1 1 L
5 1 1 1 1 1

according to the nPoints length matrix. It uses

bilinear interpolation of the table values at the
four neighboring points (above, below, left,
right).

AL

AUCHD WEAVER

Page: 98 of 163

DSP Concepts Audio Weaver Module User’s Guide

/\f\ I | Madule: TableLookupl l

Variables | Array: table | Arguments | properties | Buid |

TableLookup1
[TableLookup]
Linear size of table
Table length 10 points
Range [-1 1]
- ______________ -
|Medu|zTabwakupl I
|Vanab\es‘ Array: table ‘Argumentsl Properties | Build ‘
TableLookup uses either Linear or Cogoss bl [Losd fomfe] [Saveto e P
Min Max Step
nearest interpolation. The user has to specify the upper and Table of aveny spaced values.
lower bounds of this table. Set the size of the table with the ‘L’ L o
variable found in the arguments: : .
4 0
5 1]
6 0
7 1]
8 1]
a 1]
10 1]

For non-interpolated lookup tables, an integer index is listed, and output is based on that index’s data value. That
data can be float or int type data.

A ph -

TableLookupintFloat1 TableLookupintint1
[TableLookupintFioat] [TableLockupintint]
L:8 L&
TableLogkupIntFloatl
@ Tablelookuplntlntl @
table
table
1
i
1 1.5561
1 Ll
2 2.6
2 7
3 2.8
4 3.074 3 3
5] [;016 4 B
] 3 847 > 3
2 : P] 4
s N : :
e 8]

TableLookuplntFloat: TableLookuplntint:

AL

AUCHD WEAVER

Page: 99 of 163

DSP Concepts Audio Weaver Module User’s Guide

| NONLINEARITIES

Modules which implement point nonlinearities and are stateless and easy to understand. They are listed below
and used in the examples later on.

Asymmetric
Clip

ClipAsym Hard clipper

Polynomial

Polynomial f(x
Polymomial ¥ ()

IZI Square Squares a signal x*x

Square

Other nonlinearities which are documented elsewhere are the Abs, Tablelnterp, SoftClip, and TwoPiecelnterp
modules.

AL

UG WEAVER

Page: 100 of 163

DSP Concepts Audio Weaver Module User’s Guide

[TRIG

Trig functions are simple enough to not need much detail. They operate = JJ Trig

in radians, not degrees. The following trig functions are provided: = | Acos
man | AR
wa | ATAN
sant | Af3R2
e= | Cos
e | Cash
=n | 5in
=n | Sinh
™ | Tan
ran | Tanh

ALY

AUCED WEAVER

Page: 101 of 163

DSP Concepts

MISC

Audio Weaver Module User’'s Guide

Most of these modules are used for debugging, and verification during the product development phase. These

modules are great for testing the hardware, stimulating conditions, profiling, and adding custom interfacing with
the Board Support Package such as GPIO and other (non-audio) input signals. There are also modules in here that
help get around the strict data flow of AudioWeaver by manipulating how the data is represented (i.e. samples

turn into channels, etc).

BIQUAD LOADING

This module builds virtual biquads in memory with a number of max stages, and a
variable that “turns on” the filter function. As data passes through, the mips and
memory will update in the server window. This is useful for evaluating what kind of

processing works and fits on a target. Set maxStages in the Arguments tab.

|M:>:Iu|5: BiquadlLoadingl

Varibles | Arguments | properties | Build |

Mame Value

rmaxstages 100 Maximum number of filter stages to test

Biguad
Loading

BigquadLoading1
[BiguadLoading]
maxStages: 100
numsStages: 1

Big uadLnE...@

numStages

100- |-
90- |-
80- |-
70| -
60 - |-
50 -
e
30 -
el
10-

BLOCK COUNTER

This module outputs the number of blocks processed based on the system BlockSize. This source increments for

each block called at the hardware defined samplerate. It then outputs this value. This is useful for determining how

many blocks get processed in the system, typically for debugging.

Black e —
Counter —l _l
BlockCounter1
[BlockCounter] Sinkint1
[Sinkint]

SinkIntl

=

value[1]

15840

AL

UG WEAVER

Page: 102 of 163

DSP Concepts Audio Weaver Module User’s Guide

|COEFF TABLE

This module is similar to paramSet, except it sends a Module Cosfatiel
vectored variable rather than a singular numeric | iaben| Avay: cooff |uoumonts | Rmpegtion| B
. . [] Expose symbal Load from file... Save to fie... Apply
variable. Set the coeffs to be sent to the variable by [||]
.) . . Min Max Step
typing into the properties sheet, then clicking 2D coeff table.
apply(see right). Upon clicking apply, the coefficient 1
data is sent to whatever module lies within the 1 0
modVar argument. (see below) ; E
4 0
5 0
Maodule: CoeffTablel
Variables | Array: coeff| Arguments | properties | Buid |
Hame Value
dataType Float Data type of variable
numROWs 5 the size of each vector
numCals 1 the number of vectors
modVar Mod.Var Specifies the internal variable to set in module.variable format
COUNTER

This counter module counts at a given interval, with a minimum interval of one msec. This is good for debugging,
as it gives a time constant to determine when(in ms) an issue arises.

CYCLE BURNER

This module is similar to the Biquad loading, except it works in computation cycles per block, and has no inputs or
outputs. This is convenient for testing out multiple block sizes and cpu load for the target.

FIRLOADING

This module is similar to the Biquad loading, except it is more memory intensive. Use this to determine the amount
of FIR modules that can be loaded onto a target.

GPIO

The GPIO module is binary only. It can both accept GPIO signals and send them to the target, based on parameters
in the module properties. The sample rate can also be specified. This should match the setup in the BSP. Most
target chips will have dedicated GPIO lanes, and will specify how to set it up.

AL

AUCRT WERVER) Page: 103 of 163

DSP Concepts Audio Weaver Module User’s Guide

| MATH EXCEPTION

This module replaces NAN and INF with the value specified by the user. This is useful for keeping stability in a
system which may require numeric data.

MEASUREMENT

This module is used to measure a room based on a periodic output of the input signal. This is used to average the
recorded signal into the response buffer. The trigger pin starts the measurement upon changing from 0 to 1. Once
the measurement is complete (based on numReps and the length of the signal, L), the trigger is set back to 0.

PARAM GET

The ParamGet module reads the value of a parameter from an existing module and outputs it on a wire for use
elsewhere in the system. Which parameter to output is specified in the module properties, with “name of the

module”.“parameter to be output”. An example of this module can be found in ParamSet and ParamGet.
ParamGet -
o Outputs a parameter from a specified
Param Gt module
Meodule: ParamGetl
Arguments | properties | Buid |
MName Value
dataType Float Data type of variable
modVar Mod.Var Specifies the internal variable to get in module.variable format
PARAM SET

The ParamSet module does the opposite: it takes an input from the system and sets its value to a parameter of an
existing module. The key is that this module can set parameters of any type of module, which eliminates the need

to create separate controllable versions of each module. An example of this module can be found in ParamSet and
ParamGet.

reen ParamSet

Sets a parameter of a specified module
Param Set

AL

UG WEAVER

Page: 104 of 163

DSP Concepts Audio Weaver Module User’s Guide

Module: ParamSetl
Variables| Arguments | properties | Buid |

Name Value
dataType Float Data type of variable
modVar Mod.Var Specifies the internal variable to set in module.variable format

SAFETY CLIP

This module clips an incoming signal based off of an external trigger. The clip amount can be specified in the

properties. This is used in systems to prevent damage to equipment by digitally clipping loud sources. This usually
results in less gain given.

SAMPLE RATE

This module counts the sample and outputs the estimated sample rate of a system. This is useful for debugging
samplerate related issues.

SET WIRE PROPERTIES

This module is used to change wire properties for a more direct handling of audio weaver data values. It works by
treating the samples as different block sizes, channels, data type, sample rate, and complexity. The only rule is that
the samples in must equal the samples out. For example, at 48k and a block size of 32 stereo signal, that means
there are 32 samples every block, or 64 samples per block of stereo information. These 64 samples can also be
represented as blocksize=64, one channel. Notice the wire info and SetWireProperties modules in the following

design:
1x32
] 45?;2[”1 1
32 = 154 154 232 B4 xE4
HW [45000 Hz = TYPE bl 45000 H ——f> @— [48000 Hz 42000 Hz > @— [op—— 45000 Hz =i [48000 Hz> YPE pamontzd pw
— fractzz | Convert float float float float 1x32 float | COMVEMN™ franpaz
SYS_in 48000 Hz S¥S_out
Channels: 2 L | - " - " float Channels: 2
BlockSize: 32 SYS_tUFIua_t Set‘ufu_'ePruperln_am Scaler1 Set‘ul’u_'ePrupertn_a&Z SYS_tUFrac_,t BlockSize: 64
Sample Rate: 43000 [TypeConversion] [SetWireProperties] [Scalerv2] [SetWireProperties] [TypeConversion] Sample Rate: 43000
Data Type: frad}z fract32 —= float numChannnels: 1 gain: 0 dB numChannnels: 2 Deintl SV inter fleat —= fract32 Data Type: frad32
. blockSize: 64 smocthingTime: 10 msec blockSize: 32 [Deinterieave] [Interl_eave] .
sampleRate: 43000 isDB: 1 sampleRate: 43000
dataType: float dataType: float
isComplex: 0 isComplex: 0

While this doesn’t give much advantage in the time domain with standard audio data, this module is especially
strong in the frequency domain to handle signal flow.

AL

UG WEAVER

Page: 105 of 163

DSP Concepts

Audio Weaver Module User’'s Guide

|STATUS SET

This module can change the “status” of other modules in the design. This is useful for limiting compute cycles
during runtime. To bypass a module during runtime, the status set module is given a variable name of where to
point, and four controls for the status states: Active, Muted, Bypass, and Inactive. The input takes in an integer
signal 1-4, with any other number gets treated as 1. These numbers represent the four states. If this control signal
gets bypassed, then the status set module cannot turn itself back on. The diagram below is an example of a very
low power “processing” system, which takes advantage of the status set module.

—

232

HW B 48000 Hz > TYPE

E:mm Convert I
SY5_n

32
Channels: 2 [
BlockSize: 32 SYS_tofloat L0

Sample Rate: 43000 [TYPECOnversior, ﬂ

Data Type: fractag "acio2 = fleal

e

Processing

EEENE 1t
1500 Hz
foat || L ITT
BlockStatistics | 11
[BlockStatistics] 1500 He
statisticsType: RMS [4] — | foat
OnThreshold
[DCSourceV2]
value: 0.16111

[DCSourcevz]
value: 1

[Subsystem]

in1
b

Comparal
[LogicCompare]
compareType: GREATERTHAN [4]

—>Status Set

StatusSetl
[StatusSet]
Processing

Update on change

numilodules: 1

1x32
48000 Hz
Subl Foxt
[Subtraci]
Fvy gain
2 48000 Hz
%32 =
Scalert
[Scalerva]
gain: 0 linear
smoothingTime: 10 msec
isDB: 0

132
45000 Hz
float

132
Type o -
Conpenk #EB]
5V5_out
TR Goaies 2
P Sample Rate: 43000

float —> fractiZ “poa Type: fract3z

UPDATE SAMPLE RATE

This module updates the sample rate information for wires and modules. It does not change the sample rate. For
that, see the FIR Interpolator and Decimator in the “Multirate” folder.

AL

UG WEAVER

Page: 106 of 163

DSP Concepts

MIXERS

Mixers combine separate audio sources into fewer channels, or into each other.

Audio Weaver Module User’'s Guide

MIXERV3

A Mixer is an M x N array of gains that transform M input channels into N output channels. This is useful for
combining signals together, and consolidating many gain values into a single module. Our Mixer module is
smoothed, and optimized based on the amount of non-zero coefficients specified by the user. It supports input pin
controls or single pin, multi-channel controls. A mixer is good for handling many channels at once, so it excels in
the algorithm for downmixing from surround sound 5.1 to stereo. This means transforming 5 input channels to 2

output channels:

v I Type
Hw Convert” #?4’ .

SYS_in
.c
B?:c?:gi;?-éd TypeConversion Micery3d
Sampls Rate: 45000 [LYPEConversion] [Mixer\/3]

Diata Type: fract32 WHEIAT = Boat

TypeConversion2
[TypeConversion]
float —= fract32

Convert B

SYS_out
Channels: 2
BlockSize: 64

Sample Rate: 43000
Data Type: fract32

The Mixer module holds a matrix representing the downmix equations, which are

shown in its inspector (in linear units):

Lt =L +-3dB*C + -3dB*(-Ls -Rs)

Rt =R +-3dB*C + -3dB*(Ls + Rs),

Miesrv3l =

gain
i 2
1 0
0 1

0.707/95| 0./0795
0.707/95| 0../0735
0.707/95| 0.7/0795

L, Y I g Y O

The Mixer module stores a matrix of all the gain coefficients and performs matrix multiplication to apply the gains
to the appropriate channels. When the matrix becomes large, this computation becomes very expensive. It may be
beneficial to deinterleave out channels if they don’t require the mixing stage.

SMIXER2X1

This mixer takes in two pins of arbitrary
channel count and outputs the sum of the
two with a scale factor specified in the
module’s variables.

Meodule: Smicerl

Variables | properties | Buid |

Name Value
gainl 1
gain2

smaoothing Time 10

-10
-10

10
10
1000

Step
Desired gain applied to first input channel.
Desired gain applied to second input channel.
Time constant of the smoothing process.

AL

UG WEAVER

Page: 107 of 163

DSP Concepts Audio Weaver Module User’s Guide

| WET DRY

This module is similar to the 2x1 mixer, except the two pins are exclusively balanced from one another to achieve
either same energy or same amplitude. This setting can be configured in module variables. The linear mixing value
represents the ratio from 0-1 of the mixing of the signals. A value of .5 means equal mix from both signals, and is
similar to the Smixer2x1 module. Values under .5 mean that the signal is less “wet” so more of the “dry” pin comes
through. Values over .5 drive more of the “wet” pin.

AL

UG WEAVER

Page: 108 of 163

DSP Concepts Audio Weaver Module User’s Guide

MULTIRATE

MULTIRATE PROCESSING

Audio Weaver is able to process signals at different samples rates all within the same layout. This was seen with
control signals but the feature is much more powerful. Audio Weaver is able to handle multirate processing in two
different ways:

1. Single block time processing
2. Multiple block time processing

In single block time processing all of the audio modules execute within a single thread at the same rate. In multiple
block time processing there are multiple threads on the target processors and different block times execute within
separate interrupt levels. Each approach is described in turn.

SINGLE BLOCK TIME PROCESSING

A module has an associated block size and sampling rate. We’ve been treating these wire properties as separate
information but when combined they yield the block time of a module. For example, consider the system shown
below.

—
%32 %32 %32 %32
48000 H = 4ED00 Hz = = 4E000 Hz = = 45000 H
@ :,a:tgzz }Cunvertl:, float =P m B float : >Cun\.fertp .-,53521
S¥5S_in SYS_out

Channels: 2 Channels: 2

BlockSize: 32 B ¥=-foklaad SOf P {=-lohrack BlockSize: 32
Sample Rate: 43000 [TypeConversion] [SecondCrderFiterSmoothed] [TvpeConversion] Sample Rate: 43000
Data Type: fract32 Waati2 — Hont Bypass Hoat = et Data Type: fract32

The sampling rate is 48 kHz and the block size is 32 samples. Each block of audio thus represents 32 / 48000 = 2/3
msec of audio. 32 sample audio buffers arrive every 2/3 msec and each block executes in turn.

There are 4 modules which can be used to change the sampling rate and still maintain the same block time.

Upsampler Inserts zeros between samples. No
Up Sampler filtering

AL

UG WEAVER

Page: 109 of 163

DSP Concepts Audio Weaver Module User’s Guide

Downsampler

Down
Sampler

Discards samples. No filtering.

FIRInterpolator Upsampler followed by an FIR

FIR interpolating filter
Interpolator

FIRDecimator

FIR

Decimator

FIR filter followed by a Downsampler

The Upsampler and Downsampler modules insert zeros and discard samples, respectively. Specify the up and
downsampling factors on the module properties. The downsampling factor must be chosen so that it divides the
input block size and yields an integer number of output samples. Consider the system shown below:

— s — — Is —
232 apd e 2
43000 Hz Upsampler1 6000 Hz 52000 Hz Downsamplert , ooof,
L 2 L =
— [Upsampler} float float [Downsampler] P

a L2 D2
2032
HW ;aam Hzs TYPE —I I— D—I T 32
fract3z | Convert YPE 4000 Hz HW
SYS_in Convert| ‘fraegzs

32
Channels: 2 I SYS_out

BlockSize: 32 SVS_toFioat SoE e Chammesiz
sample Rate: 43000 [TypeConversion) [SecondOrderFiterSmoothed] - o oFrac " BlockSize: 32
: fract32 —» float B ypeConversion)
Data Type: fract3z "0 AL ypass o frating Sample Rate: 43000

Data Type: fract32

As before, the input block time is 2/3 of a millisecond. The Upsampler module is configured for an upsampling
factor of L=2. The output sampling rate is 96 kHz and the block size is now 64 samples. Note that 64/96000 = 2/3
millisecond and the block time is preserved. As before, all modules execute every 2/3 millisecond.

The Upsampler and Downsampler modules correspond to standard up and downsamplers found in DSP text books.
Since they lack any filtering, they are rarely used.

The FIRInterpolator and FIRDownsampler modules, on the other hand, contain FIR filters. The FIRInterpolator
inserts zeros and then filters the resulting signal with a lowpass filter; the FIRDecimator first applies an FIR lowpass
filter and then decimates. Both modules use an efficient polyphase implementation to reduce the processing load.
These modules also preserve the underlying block time.

AL

UG WEAVER

Page: 110 of 163

DSP Concepts Audio Weaver Module User’s Guide

On the module properties for the FIRInterpolator / FIRDecimator specify the up / downsampling factor as well as
the length of the FIR filter. The length of the FIR filter must be an integer multiple of the up / downsampling
factors. When the modules are instantiated the FIR filter coefficients are computed using a Hamming window.
Advanced users can change the filter coefficients by using Matlab scripts.

[
— [For—m —1!F
o . 24 o
2432 a4 . 2432
48000 Hz FRnterp1 55000 Hz S0000]} 2 HRllec 48000 Hz
| — float nterp ficat loat [FIRDecimator] Float
2z [FIRinterpolator] | Decimation factor: 2
Hw E 45000 Hz = Type D—I Inter_pnlatlnn factor: 2 I_ o Fitter length: 32 T 232
e fractaz | Convert Filter Ieglg:th. 32 Latency: 15.5 samples CU;’&:H 45000 Hz| HW
Channels: 2 e Lateng é;ﬁﬁhusrf; e Qoo = S o
o i il SY5_toFloat SOF1 L | Channels: 2
Sample Rate: 48000 [TypeConversion] [SecondOrderFiterSmoothed] SY3_toFract BlockSize: 32
Date Type: fract3z Tacts2 —> float Bypass [MypeConversionle, o pate: 45000

float — fractd2 popq Type: fract32

The Rebuffer module stores and overlaps buffer data into larger block sizes, allowing for more data to be
displayed. It does not change the fundamental block size for the system.

e Overlaps data into larger block sizes,
=" Rebuffer [Core32] allowing for longer time displays. Does
Rebuffer not change fundamental block size

The Rebuffer can accept data of any type. In its module properties is a variable called “outBlockSize,” which allows
the user to set the output block size for the module. If a positive value is entered, that value is used as the output
block size. If a negative value is entered, the value is used as a multiplier to the input block size. For example, an
outBlockSize of 32 will yield an output of block size 32, and an outBlockSize of -8 yields an output with 8 times the
block size of the input.

For example, the following block diagram shows a SinGen source wired directly to a Sink module to view in the

scope display:

Sine1 Sink1

However, the scope display shows only a small amount of data (in this case, 0.67 msec, based on the example
above with a block size of 32 and sample rate of 48000 Hz):

Page: 111 of 163

DSP Concepts Audio Weaver Module User’s Guide

B

B sinki =] [o[@ | =]

— Owerall Control

Time =
"""""" Update
Show Grid

— 1 Axis

Linear

___________ Linear -

Auto Range

— K Axis
-1

Linear -

T 1 L [P
[I R it el el

4 |:|Aut|:l Range

To extend the amount of displayed data, a Rebuffer module with outBlockSize -8 is added between the source and

the sink:
=000
RAL > 1B
-

Sine1 Rebuffer1 Sink1

This allows the Sink module to display 8 times the amount of data, easily spanning the 4-msec window:

AL

UG WEAVER

Page: 112 of 163

DSP Concepts

Audio Weaver Module User’'s Guide

B sinka

Linear

Time

—

msec) 4

(<= |a | & | 2|

— Owerall Control

Time =
Update
Show Grid
— 1" Axis
Linear =

Auto Range

— X Axis
Linear -

[7] Aute Range

b

The Rebuffer module is also useful for
multirate processing. The Rebuffer module
increases the output block size while
keeping the sampling rate and block time
constant. It achieves this by outputting
blocks which overlap in time. Consider the
system shown below. The input block size
is 32 samples and the Rebuffer module is
configured to output 128 sample blocks.

SYS_in
Channels: 2 lm
BlockSize: 32 —loriod

—

232
HW ; 43000 Hz > CTWE p—l

fractiz onvert

Sample Rate: 4000 [TYPEConversion]
Data Type: fract32

fract32 —= float

~[00 T 1
| T = [48000 Hz
— float L]
232
e e Rebufferi Sink1
d [Rebuffer] [Sink]

outBlockSize: -4

Each block that is output overlaps the previous one by 96 samples as shown below.

The Rebuffer module is useful for frequency domain processing when it is necessary to have a certain amount of
overlap between blocks. The inverse of the Rebuffer module is the BlockExtract module. This module extracts a

Output Block 0

Output Block 1

Output Block 2

subset of samples and reduces the block size.

Output Block 3

AL

UG WEAVER

Page: 113 of 163

DSP Concepts Audio Weaver Module User’s Guide

MULTIPLE BLOCK TIME PROCESSING

In some applications processing needs to be performed at multiple block times. Consider a system that has low
latency processing with a block size of 32 samples combined with frequency domain processing at a block size of

256 samples. At a 48 kHz sampling rate, the 32 sample processing would occur every 2/3 millisecond while the 256
sample processing would occur every 5 1/3 millisecond. This type of processing is achieved using the BufferUp and

BufferDown modules.

E BufferUp Buffers up to larger blocks without
Buffer Up overlapping.
i BufferDown

Buffers down to smaller blocks without

Buffer Down dropping samples.

The BufferUp module generates larger non-overlapping blocks. On the module properties dialog specify the output
block size either as an integer number of samples or as a multiple of the input block size. In the example above, to

go from 32 to 256 samples, specify a 256 sample block size (or a multiplier of 8). To return to a 32 sample block
size, use the BufferDown module. Again, explicitly specify the output block size either as an integer number of

samples or as a divider.

The system shown below combines 32 and 256 sample block sizes.

— N —

- 23z | Fracta2 a2) maoss | | SOF %356] %32 | Flest a3z | -
Hw ‘ 48000 Hz F-Ira:}st 48000 Hz 48000 Hz _LD_ 48000 Hz Fr;c:aZ 48000 Hz Hw
SY5_in]
NumChannels: 2 SYS_toFloat D]]:I:I:I] SOF1 [1/8] | |:|:|:|:|:|:|:| SY'S_toFract
BlodkSize: 32 [Fract32ToFloat] [SecondOrderFilterSmoothed]) | [FloatToFract32]
Sample Rate: 42000 BufferUp1 [1/1 —= 1/8] Bypass | BufferDown1 [1/8 —= 1/1]
Data Type: fract32 [BufferUp] [BufferDown]

cutBlockSize: 256 H outBlockSize: 32

In the figure, the name of the filter module is shown as “SOF1 [1/8]”. The annotation [1/8] indicates that this
module executes in a separate thread at a rate of 1/8™ compared to the others. The BufferUp module indicates
[1/1 = 1/8] which means that the part of the module operates at the full rate (1/1) and part of the module
executes at the 1/8 rate. The output of the BufferUp module contains 256 samples which equals 8 32-sample
blocks. The output is non-overlapping as shown here.

SYS_out
NumChannels: 2
BlockSize: 32
Sample Rate: 48000
Data Type: fract22

AL

UG WEAVER

Page: 114 of 163

DSP Concepts Audio Weaver Module User’s Guide

Dutput(Block

Dutput|Block 1

Dutput(Block 2

The BufferUp and BufferDown modules contain internal double buffering to connect the two processing rates. The
double buffering introduces a latency equal to twice the larger block size. In the example above, the latency
through the BufferUp, SOF, and BufferDown modules equals 512 samples.

On the target processor, the 32 and 256 sample processing occurs in different threads (or interrupt levels). The 32
sample processing occurs in a higher interrupt level and actually interrupts the 256 sample processing. The pattern
of processing would be as shown below. The 32 sample block processing occurs at a uniform rate. When the 32
sample processing is not active then the 256 sample processing has a chance to execute. The 256 sample
processing must complete before the next 8 blocks of 32 samples arrive.

32 sample block 256 sample block
processing processing

Running at multiple block times can lead to erroneous module profiling results for the larger block time. The small
block time is correct but the large block time incorrectly includes the time needed to execute the smaller blocks.
Be aware of this when viewing profiling results.

Another limitation of Audio Weaver is that the smallest possible block time in the system corresponds to the
fundamental block size of the target system. This means that the smallest block time occurs at the input pin of the
system. Audio Weaver buffers can only BufferUp to larger block times. When using a platform with a fundamental
block size of 32 samples, it is not possible to BufferDown to a 1 sample block size for stream processing.

One final note, not all targets support multiple block times. Refer to the user guide of the specific hardware target
to see if this feature is supported.

SIGNAL MANAGEMENT

SIGNAL ROUTING

Signal routing modules are modules that manipulate the flow of data. This is done on a few different levels. The
marker module is a simple fix to wiring components overlapping, and has no effect on the runtime algorithm. This
module can also be used as test points to view signal response. There are also modules that control channel flow,
allowing interleave/deinterleave, or even the routing of one channel into another, and finally the multiplexing to
choose between various signals. Data type conversion occurs when the samples are all converted into another
numerical format. The more complicated modules in this folder control block flow and sample flow.

Page: 115 of 163

DSP Concepts Audio Weaver Module User’s Guide

 MULTIPLEXORS

Multiplexors (or Muxes) are logic elements that allow different signals to be selected based on an index (or
control) value. Muxes are useful for setting up A/B comparisons to allow accurate comparison of two different
signals. Multiplexors support multichannel signals and the number of input pins (number of signals to select from)
is specified as a constructor argument.

There are 3 different types of muxes:

Just copies data; no smoothing

General Multiplexor Control Supports any 32-bit data type
General Multiplexor Control

Index taken from inspector or from a

control pin

Supports smoothing for switches and
crossfading into/from silence.

Multiplexor (float) Multiplexor (float) . .
Floating point

Has control pin

Sample Multiplexor Contrell Sample Multiplexor Control ~ Sample based mux, no smoothing

Only has control pin

If the signals that are switched between is a control signal or a signal where discontinuity is not
important, then choosing 0 smoothing or 0 fade time has computational advantages.

AL

UG WEAVER

Page: 116 of 163

DSP Concepts Audio Weaver Module User’s Guide

The index variable is zero based and determines which signal is selected. If there are two

signals to select from, then the inspector is drawn as a checkbox. Unchecked (zero)
selects the first signal and checked (one) selects the second signal. L
[
[=
kdu ti:nlexn...@
— Multiplexor1
Index [Muttiplexery2]
index: O
|:| smoothingTime: 10 meec
fadeTime: 10 msec

If there are more than two signals to select from the inspector has a drop list : Mutipi=se..[E3]
L. index
[
[
= (=
[
Here are a few examples of how to use a _ "
multiplexor module in practice. MultiplexorFade ECHEHEERRRRERHRNRAER D S atpleor
performs seamless crossfading between signals. n L
Multiplexor1
In this first example, the multiplexor is being Er
SOF1 'smoothingTime: 10 msec
. . [SecondOrderFiterSmoothed] c
used to enable an optional equalizer. s

In the next example, 2 different versions of an algorithm are compared to see which one sounds better. This is a
classical “A/B” comparison in audio.

AlgoA
[Subsystem]
_.'\— [
—
==
Multiplexor1
AlgoB [Muttiplexorv2]
[Subsystem] index: 0

MARKER

AL

UG WEAVER

Page: 117 of 163

DSP Concepts Audio Weaver Module User’s Guide

The Marker module is used label wires in the design and also to make wire routing prettier. The Marker module is
a virtual mode and is removed from the system when it is built. The Marker module is very frequently used. Add a
Marker module to the layout by right-clicking on an empty portion of the canvas and selecting Add Marker.

Add Marker

Paste Cirl+V
Select All Cirl+A
Redraw

Build and Run

Design Mode

Below is an example of how to use the marker module to clean up a design. Initially the wire goes through the text
label of a module making it difficult to read.

[+

p Type
Convert B Max Abs B

DowenwardExpanderCore

5Y5_in Convert 7]
: ; 35 _out
B?§§£Srl|§l: 322 SYS_toFloat MaxAbs threshold: -20 dB i
Sample Rate: 4000 [YPeConversion] [MaxAbs] o 5 AR Lt P yolokract BlockSize: 32
ample Rate: 4 kneeDepth: 0 dB [Multiplierv2] [TypeConversion] N
Data Type: fractaz ~ [1oci=2 —= float - Sample Rate: 45000
ata Type: fra attackTime: 20 meec oneChanneldutput: 0 float —= fract32 Data Tvpe: fract32
decayTime: 100 msec ype:

Now reroute the wires with as few or as many markers as needed.

AL

UG WEAVER

Page: 118 of 163

DSP Concepts Audio Weaver Module User’s Guide

, Type
W[
Convert B Max Abs DownwardExpanderCore

e P —H_w_]
comert?

SYS—i"_ [DownwardExpanderCore] =75 ool
Bﬁ:;sg';l: 3?2 SYS_toFloat MaxAbsT threshold: -20 4B P
Sample Rate: 43000 [TYPEConversion] [MaxAbs] rofi- 5. il Hut B otokeact Blocksize: 32
pl te: fracts? —= float kneeDepth: 0 dB [Muttipliery2] [TypeConversion] Sample Rate: 43000
Data Type: fract32 attackTime: 20 msec oneChannel0utput: 0 float —= fragtd2 ;

decayTime: 100 msec Data Type: fractid

M
[Marker}

, Type
4 [¥
- Convert© Max Abs DownwardExpanderCore1 Type) E Hw

SYS—i”_ [DownwardExpanderCore] Convert Ve ol
Bﬂ;’g’;? 322 5YS_toFloat MaxAbsi threshold: -20 4B bt
Sample Rate: 4g0pp [1YPECanversion] [MaxAbs] o 1 HENdA Wit i Blocksize: 32
ample a_e. fract3? —> float kn&el?&pth: 0 dB [Mutipliery2] [TypeConvergion] Sample Rate: 8000
Data Type: fract32 attackTime: 20 msec oneChannel0utput: 0 float — fract32 :

decayTime: 100 msec Data Type: fract32

~ -
PN PRI

M1 Mz
[Marker] [Marker]

The second use of the Marker module is in computing frequency responses. get the frequency response of an
individual filter by right-clicking on it and selecting “Plot Frequency Response”. With a chain of filters, insert
Marker modules at the input and output wires.

- [t A e -

W1 3
[Marker] SecondOrderFiterdP1 SOF1 [Marker]
[SecondOrderFiterHP] [SecondOrderFiterSmoothed]
Low Shelf Peak EQ
freq =250 Hz freq = 1600 Hz
gain =0 dB gain = -3 dB
Q=1

| :)
AT WEAVER Page: 119 of 163

DSP Concepts Audio Weaver Module User’s Guide

Then using the Measurement menu plot the frequency response between Markers M1 and M2. This is given in
Tools->Measurements.

Inspector Help
Profile Running Layout Q |
IR EIE = [Top The measurements made will be saved here, allowing
Attach to R ing T .
RO e for easy updating of plots.
P Files_
roces | NewSystem.
|4\ Configure Frequency Responss Measurament { = |
Overall Figure Configure Individual Plots
Name: | peasurement 2 Enable Name Starting and Ending Markers ~ Channal # Line Style Line Color Line Width
Show Grid Plat 1 M1 v |M2 - |1 = Solid = Blue = 1 -
Ferrs Ao] Plot 2 M1 w2 1 Solid Blue 1
D Plot 3 M1 M2 1 Solid Blue 1
Min:
_— 20000] Plot 4 M1 "2 1 Solid Blug 1
Num Points: 200
units: [, -
Magnitude Plot
Show:
Units: db20 -
Phase Plot
Show: D
Units: | gegrees
Unwrap:
Update Plot Close
e~ =291 Finally, the plot will pop up in its own window with the standard
Do b2 UBRs- G 08 =0 matlab plot capabilities, as well as an “update” button to redraw the
1- i . .
¢ frequency or phase response of the system. Use this to see how filters
oy e . . - . -
T are responding with each other. This is based on the filter coefficients,
é o onfigure . .
2. so this feature doesn’t work on every module. For reading the output
=
- - S " . of modules, use the sink modules.
10 10 10 10° 10
02 Measurement 1 - Phase
_
g o
é 02
04
10! 102 10° 104 10°
Frequency (Hz)

NTERLEAVE/DEINTERLEAVE

Two of the most basic modules are the Interleave and Deinterleave modules.

ALY)

AUCHD WEAVER

Page: 120 of 163

DSP Concepts

Deinterzave

Intefeave

Deinterleave

Interleave

Audio Weaver Module User’'s Guide

Turns multichannel signals into separate mono
signals.

Combines multiple mono channels into a single
interleaved signal.

These modules are part of the default system which is created when starting a new design. For the Deinterleave
module specify the number of output channels on module properties and it must match the number of input
channels. If there is a mismatch an error will pop up when the system is built.

The Interleave module takes N input signals and combines them into a single multi-channel output. The number of
input pins is specified by module properties. One special property of the Interleave module is that not all input pins
have to be mono. In fact, any number of channels per input pin converts to the output simply “stacking” all of the

input channels.

In the first example, a stereo input’s left channel is delayed by 10 msec.

SYS_in

Channels: 2
BlockSize: 32
Sample Rate: 42000
Data Type: fract32

SYS_toFloat
[TypeConversion]
fractd2 —= fioat

232 2
- Type | ma:

Delay

I Msec

%32 %32
48000 Hz 48000 Hz

P DelayMsect P

[DelayMsec]
maxDelayTime: 10 msec
currentDelayTime: 10 msec
32 1x32
48000 H. 45000 Hz [HW
48000 Hz SYS_out

float

Deint!
[Deinterleave]

Channels: 1
BlockSize: 32
Sample Rate: 43000
Data Type: fract32

S¥S5_toFract
[TypeConversion]
float —= fract3z

Interleave1
[Interleave]

In the next example two stereo signals (L/R and Ls/Rs) are combined together with two mono channels (C and LFE)
to form a 6 channel output. The channels in the interleaved output pin will be ordered: L /R /Ls/Rs/C/ LFE.

AL

UG WEAVER

Page: 121 of 163

DSP Concepts Audio Weaver Module User’s Guide

T w32

DE' [:_: 4500 HE, et 2>
y float
LR

[Marker]

R 232
= b 48000 Hz L= o

L float B32 Type o : .

T o 45000 Hz Convert P 45;:}3:532:
[Marker] flost T i

R 113z SYS_toFract B‘[’Sﬁfsf'i?:' ??2
£ b 4000 Hr -——— > (TypeConversion] ¢ ol Rate: 43000

\Cr Tt == a2 Data Type: fract32

[Marker]

e - L 1x3Z
S 42000 Hz —— P

T - i o

LFE
[Marker] Interleave1

[Interleave]

 ROUTER

The Router module simply copies input channels to output channels. The module solves many common signal
management issues like selecting or recombining channels and in most cases is more efficient than using
Interleave and Deinterleave modules.

Router Copies and combines audio channels.
Router No smoothing.
RouterSmoothed Copies and combines audio channels.
Router . .

Smoothed With smoothing.

AL

UG WEAVER

Page: 122 of 163

DSP Concepts Audio Weaver Module User’s Guide

In its most general form, the Router module has M input pins and N output channels. The numbers M and N are
specified on the module properties:

"4\' router_inspect = ﬁ‘
Module: Routerl
. Argurments = - Source Value
Array: channeIIndex| a | Prupertlesl Build | TP 1 Chanal - .
MName Value
numiInPins 1 Number of input pins
numQutChannel 1 MNumber of output channels
. Each row corresponds to an cutput channel of the router. For each
For simplicity, we’ll start with a single input pin and then build up to the output, pick which input channel should be copied there. You can use
. . . . the droplist or manually enter an index value. You also have the option
more complicated case of multiple input pins. of muting individual channels.

In order to use the Router module effectively, how the channel routing map is specified must be understood. The
module has a .channellndex array of length N, where N is the number of output channels. The input channel to
copy to the n' output channel is specified by channellndex[n] and the channels are ordered starting with 0. Let’s
start with a simple example. Suppose that a stereo signal needs the right channel extracted. This can be
accomplished with two modules as shown below. The NullSink module is used to tie off the unused left channel

output.
Alternatively, the same function can be accomplished with a single
= router module. Configure it for a single input pin (M=1) and a single
E— output channel (N=1). Then set channellndex[0] = 1. This copies the
o T right channel (the second channel is chosen due to the index set to 1) to
s (NuliSink] the first output channel
A P '
HE =
4o e o — 4| router_inzpect
| 48000 Hz —— —
floa
[DeiEteei:I:a we] t =~ SIlcE L=

i 1 |Pin 1 Channel 2 -

out[1] = pin[1].chan[2]

AL

UG WEAVER

Page: 123 of 163

DSP Concepts

In the second example, a sound card with 12 input channels is used. The
2 target audio channels are contained in the last two input channels. In
this case, configure the router module for 1 input pin and 2 output
channels. Then set the channellndex array as shown to the right.

For the final example, crossfeed between the left and right channels. That is...

Lout=Lin+0.25Rin
Rout=Rin+0.25Lin

Audio Weaver Module User’'s Guide

—
1232 - %3z T 32
N 42000 Hz —% e [43000 Hz> YPE L 42000 Hz 4
float - fioat | Convert fract32
|
Router2 SYS_teFractl
[Router] [TypeConversion]

out[1] = pin[1].chan[11] float —= fract32

out[2] = pin[1].chan[1Z]

4\ router_inspect

1 |Pin 1 Channel 11 -
Pin 1 Channel 12 -

(=]

Source Value

10
1"

The router module can be used to swap the order of the left and right channels making it easy to implement the

crossfeed utilizing stereo processing.

LEFT CHANNEL

#70 Agd
- [Adder]
p Type hY - oneChannelQutput: 0
convert”] B Scaler! \\ R
Chsvs_l:: 5 [Scalerval N 7
Bl i SYS_toFloat Router2 gain: 025 finear .o
Sample Rate: 43000 [TYPECOnversion] ! fReuter] i it SN
" fract32 — float outf1] = pinf1L.chan[1] | 0
Data Type: fract32 l _______________ i -~ N
[
~
b
\\
Scaler2 ~
[ScalervV2]
gain: 0.25 linear
smeothingTime: 10 msec
isDB: 0

Add2
[Adder]
oneChannelOutput: 0

Routert
————Retiterf—————— 1
pin[1].

I out[1] = chan[Z] i

Type .
Convert
SYS_out
Channels: 2
SY%—‘UF”"# BlockSize: 32
rﬁ;‘;‘: ”f"‘r‘z’;';';] Sample Rate: 43000
=+ Data Type: fract32

Interleavel
[Interleave]

AL

UG WEAVER

Page: 124 of 163

DSP Concepts

Consider the case of a router module with multiple input pins. Each element of the channellndex[] array is treated

as a 32-bit unsigned integer and packs in a pin# and channel# as follows:

channellndex[n] = (pinNum << 16) + channelNum

That is, the pin number is in the high 16-bits and the
channel number is in the low 16 bits. Thus far, all

examples have had a single input pin starting at

pinNum = 0 setting the focus on channelNum, some

positive integer offset.

Suppose that there are two wires holding 5.1 channel
data. The channels are ordered as LO / RO / LsO / RsO /
CO / LFEO in the first wireand L1 /R1/Ls1/Rs1/C1/
LFE1 in the second wire. The goal is to form a new 5.1

channel signal by combining the signals as LO / RO /
Ls1/Rs1/CO/ LFEO. This can be accomplished with a
single router module as follows.

The values in the channellndex array are computed as®:

The Router module can handle any 32-bit data type. The channellndex array can be changed at run-time and the

Pin 0, Channel 0
Pin 0, Channel 1
Pin 1, Channel 2
Pin 1, Channel 3
Pin 0, Channel 4

Pin 0, Channel 5

>

N2 2 2N 2R 2

(0<<16)+0
(0<<16)+1
(1<<16)+2
(1<<16)+3
(0<<16)+4

(0<<16)+5

Routeri

[Router]
out[1] = pin[1].chan[1]
out[2] = pin[1].chan[2]
out[3] = pin[2].chan[3]
out[4] = pin[2].chan[4£]
out[S] = pin[1].chan[5]
out[§] = pin[1].chan]§]

Sinki
[Sink]

Audio Weaver Module User’'s Guide

=

router_inspect

Source
Pin 1 Channel 1

Pin 1 Channel 2

Pin 2 Channel 3

Pin 2 Channel 4

Pin 1 Channel 5

= I S VIR T

Pin 1 Channel &

4 4 4 4 A

Value

65538
65539

1]
o

1]
i

change in router occurs instantly without smoothing. For a smoothly varying channel router without pops or clicks,

use the RouterSmoothed module.

5 The notation (pin << 16) represents a left shift by 16 bits. Alternatively this equals (pin * 65536).

AL

UG WEAVER

Page: 125 of 163

DSP Concepts Audio Weaver Module User’s Guide

SINKS

Sink modules have an input pin but no output. Sinks are used to tie off unused module pins or for plotting of
immediate data.

NullSink Ties off unused module outputs.

Mull Sinke No internal buffer.

@ Sink Copies Floating point data from the wire to an
Sink internal buffer. Can be used as a scope display.

) Triggers a light (via inspector) on if “true” and off if
Botwnl Boolean Sink BOOlean slnk gg g (p)

“false”

. . Sink that copies data when input control is
@ Trggered Sk Triggered Sink . .
nonzero, else it does nothing.

_ . Copies Int Data from wire to internal buffer. Can
@ Sink Int Sink Int
be used as a scope display.

AL

UG WEAVER

Page: 126 of 163

DSP Concepts Audio Weaver Module User’s Guide

| NULL SINK

One of the examples from above used a NullSink module to tie off an unused output pin:

1x32
48000 Hz Sinkl
float -
[MullSink]
1
| E 2
48000 Hz

float

Deint1
[Deinterleave]

The left channel output is attached to a NullSink module and completely ignored. The NullSink does no processing
and uses very little memory (only for its instance structure).

SINK

The Sink module, on the other hand, has an internal buffer equal in size to the input wire. At run-time, the Sink
module copies the data from the input wire to the internal buffer. This takes some processing and some memory.

The interesting feature of the Sink module is that the inspector has a scope display that shows the real-time wave
form.

If the Sink module is displaying a signal with a block size of 1 then the inspector just shows the value (no
waveform). This is useful for displaying the contents of control signals.

Sinkl =]

value[1]

8.74228e-008

AL

UG WEAVER

Page: 127 of 163

DSP Concepts Audio Weaver Module User’s Guide

The Sink module shown above is in a system that has a 32 sample block size and displays less than a millisecond of
data. The Sink module is often used in conjunction with the Rebuffer module to display longer time sequences. For
example, Rebuffer® the data into a 1024 sample block and then attach this to a Sink module.

v D onve ot P _Hw_|
b Cunvert[u b(.‘.unvertb

5YE i 5VE_out
Channels: § Channels: 1
BlockSize: 32 B¥-tokloat Py otohract BlockSize: 32
Eample Rate: 45000 [YPEConversion] [TypeConversion] o, 0 nate 42000

Data Type: fract32 A ot Tioad > ractid Data Type: fract32

~00 1
- [—
= C]
Rebuffert Sink1
[Rebuffer] [Sink]

outBlockSize: -32

The waveform shows would be about 23 msec in length as shown below and also shows two channels of data.

S F

0.251 Overall Control

Time: ~

V] Update

V] Show Grid

\ ¥ s
Linear -
V] Auto Range
0 /\ X Asds
W V Unear
Auto Range

0.1

=

25| 0,
0 0.1 0.2 0.3 0.4 0.5 0.6
0 Time {msec) 0.666667

METER

If only an instantaneous view of a system value is desired, the Meter module can be used instead.

p— Shows instantaneous dB level in

& Meter inspector; has multichannel input and

Meter separately meters each channel

6 The Rebuffer module is described in Multirate.

AL

UG WEAVER

Page: 128 of 163

DSP Concepts Audio Weaver Module User’s Guide

The Meter module’s instantaneous display is shown in its inspector and the inspector expands to include multiple
channels.

et @ Meterl @
va}zggl] value[1] value[Z] value[3] value[4]
-15.4257 (dB) (dB) (dB) (dB)

-3.67582e-005 -15.4459 -23.3701 -22.5667

The ClipIndicator module also provides instantaneous feedback in real-time, but it only displays whether or not
audio is being clipped (i.e. the signal exceeds 0 dB).

ClipIndicator Shows instances of clipping in real-time
Clip Indicator

A black box in the inspector indicates no clipping is occurring:

n =+ ClipIndic... @ ‘

|5CI|pp|ng[IJ]

A red box alerts the user to clipping:

|sCI|pp|ng[lJ]

n == ClipIndic... @ ‘

One of the examples from above used a NullSink module to tie off an unused output pin:

)
AUCED WEAVER Page: 129 of 163

DSP Concepts Audio Weaver Module User’s Guide

3
000
1x32
42000 He Sink1
[NulSink]
o |
E 32
48000 Hz

float

Deint1
[Deinterleave]

The left channel output is attached to a NullSink module and completely ignored. The NullSink does no processing
and uses very little memory (only for its instance structure).

SPATIAL

This module folder hosts the balance module, used for arranging a stereo space using L and R controls.
STATISTICS

The RunningMin/Max module can be used to find minimum and maximum of values being processed in real-time.

The module keeps track of the min and max values seen over all time and the process can be restarted using a
checkbox on the inspector.

Im- Stores the minimum and maximum
o = RunningMin/Max values seen thus far. Can output the
Lnning
Min/Max value, but this is off by default

This module can output the minimum and maximum values as well as storing and displaying them in the inspector,
but this is off by default. It can be turned on by selecting the checkbox next to “outputValue — output type” in the
module’s module properties:

ModuleRunningMinMaﬂ Properties E' =] @

Madule Name

RunningMinMax1

| outputValue - output type

Module Help.... OK

Cancel

]
£

AL

UG WEAVER

Page: 130 of 163

DSP Concepts Audio Weaver Module User’s Guide

The RunningMinMax module is particularly useful for tuning dynamics processors. To ensure that a signal does not
exceed a set level, the RunningMinMax module can be configured to display the peak level seen over time.

SUBSYSTEM

This folder holds the subsystem module, as well as input and output pins for that module. These Sysin and SysOut
modules should be placed withing the subsystem. Their names can be changed, and will be displayed on the
subsystem as this name. Subsystems are used to keep a system abstracted and clean. They can be copied and
pasted, retaining all variables and module arguments. Finally, they can be bypassed in order to bypass all modules
within.

SOURCES

Sources have no input but output a signal to be used elsewhere in the system. The output block size, number of
channels, and sample rate are constructor arguments. They can be entered manually in the module properties, but
will default to those of the system input pin if left empty. If a source module is used within a subsystem then the
properties of the source module will be based on the first input pin of the subsystem. The parameters of the
source can be changed at runtime via its inspector.

Warning — sources are often very loud (0 dB) and must be followed by a scalar to reduce the level.

The following source modules are available in the Source folder:

FG%L . Sine wave generator with no
SineGen .
Sine smoothing
Generator

SineSmoothedGen

Sine wave generator with smoothing

Sine
Smoothed
@ Source Continuously copies data from internal
5 buffer to output wire
ource
@ DCSource Continuously outputs DC value to
DC Source output wire

Page: 131 of 163

DSP Concepts Audio Weaver Module User’s Guide

ImpulseSource Periodically outputs an impulse; period
Impulse specified in samples
Source
ImpulseMsecSource Periodically outputs an impulse; period
Impulse specified in msec

Source Msec
@ PeriodicSource Continuously outputs a stored array of

data. The internal buffer length is
Periodic " .
Source specified by module properties.
PulseGen Generates periodic rectangular pulse,
o with period and on time specified in
ulse
Generatar msec

Randi Generates slowly varying random noise
with linear interpolation between

Randi
Generator sample values
Sawtooth Generates a sawtooth wave (ramps up
S— linearly from 0 to 1, then repeats) with
Generator specified frequency
" WhiteNoise Generates uniformly distributed white
White Noise noise
Generates pink noise by applying an lIR
|III PinkNoise filter to internally generated white
Fink: Moize noise

AL

UG WEAVER

Page: 132 of 163

DSP Concepts Audio Weaver Module User’s Guide

Generates oscillations with specified
frequency and start phase

Oscillator

Oscillatar

A table of sample waveform outputs from some of the most basic sources follows:

SineGen / SineSmoothedGen

Linear

e [

Sine Sine
Generstor Smoothed

Sawtooth

Linear

Sawtooth
Generator

0 Time (msec) 4

AW)
AT WEAEr Page: 133 of 163

DSP Concepts Audio Weaver Module User’s Guide

1
1
WhiteNoise
m
m -
=
|
White Noise e e e E
1
-1
0 3 4
o Time (msec) 4
2 T
! :
1 3| N .
PinkNoise
5
E 0 1 ! [_
: 1
Ayt R SN — L
Pink Moise : : |
-1 : '
2 :
0 1 2 3 4
0 Time (msec) 4

Page: 134 of 163

DSP Concepts Audio Weaver Module User’s Guide

1 2 :
DCSource . I
(OUtpUtsonESteadyvame) 1-5------------5 ----------- E-----------? -----------
- : : :
O NI -
DC Source o J ----------- L ---------- L -----------
-1 E
U 1
0 1 5 : :
0 Time (msec) A
1
Randi
m
[1k]
|y
£
Randi
Generator
-1

0 Time (msec) A

Page: 135 of 163

DSP Concepts Audio Weaver Module User’s Guide

LARGER EXAMPLES

SPEAKER SPREADER

Below is an example of a speaker spreader system and a discussion of how it is built up from individual modules.

ios | et
Convert H convert

SYS_n e SYS_out

g e S g
Sample Rate: 43000 [TYPECONVersion] [TypeConversion] oo\ nate: ag000
Data Type: fracts2 — act32 —> float Muttiplexorl float —> fract32 “poss Type: fractaz

[Multiplexer\i2]
o outt Scaler! i1 outt b EXIT

msec

10

Scalerv2]

+ [gam: T + fadeTime: 10 msec
_ smoothingTime: 10 msec _ 1

outZ| 18DB: 1 out2

Scalerd

[Scalervz]
SYS_deint SumDiff1 SumDIft2 Interizavel gain: 2 fingar
[Deinterieave] [SumDiff] [SumDiff] [Interleave] Smﬂmh'"_ﬂggeom msec
isl

Scaler2
[Scalervz]

smovihingTime: 10 msec

A speaker spreader widens the image of a stereo signal. To accomplish this, some mathematical modules are used.

First, a Deinterleaver module must be used to separate the channels. The separate left and right channels are then
fed into a SumDiff module. The SumDiff module takes two inputs and outputs both half their sum and half their
difference, as shown below.

Left channel (L) —— — (L ; R)
Right channel (R) — (oo L ﬂ
2

If Inputs 1 and 2 are the left and right channels, then Outputs 1 and 2 have special properties. Output 1 (the sum)
is the portion of the signal that forms the center image, while Output 2 (the difference) is the stereo or wide
portion’. By boosting or reducing these, stereo image width increases and decreases. The Scaler modules that
follow will be used to control the system in real-time (hence the smoothing).

After scaling, the signals are then passed through another SumDiff module to help us return to proper Left and
Right channels, shown below.

7 The representation of the signal as (L+R) and (L-R) is also called MS or Mid-Side.

AL

AUCED WEAVER) Page: 136 of 163

DSP Concepts Audio Weaver Module User’s Guide

{L;R}_ _}%({L;R}|+{L;R])zé(L+R2+L—R)=%(%)=IE_
-
vo | e L o et ey e

Mathematically, the signals are now half the level they started out as, so after the Interleaver module recombines
the channels, a Scaler module applies a linear gain of 2.

The Multiplexor module is used to show the difference the speaker spreader makes. By selecting and deselecting
its index, the module toggles between the spreader and the unprocessed signal in real-time. Increasing the gain on
the difference channel should spread the sound image.

AL

UG WEAVER

Page: 137 of 163

DSP Concepts Audio Weaver Module User’s Guide

LOUDSPEAKER PROCESSING - STEREO

Below is an example of a system for loudspeaker processing, followed by a discussion of its components.

Limiter
Max Abs il
MaxAbsT CimiterCore1
[Maxabs] [AGCLimiterCore}
; threshold: -20 B .
A ype ain: 0 dB . Tvpe 4-
SYS_n o 5v5_out
B?;‘;g;‘: :fz SV5_toFloat BassTone TrebleTone Volumel Speakered attackTime: 20 msec Mk SV5_toFract B“:\:‘:Es”i;f ;2
[TypeConversion] [SecondOrderFiterSmoothed] [SecondOrderFiterSmoothed] [VolumeConiro] [SecondOrderFiterSmoothedCascade] decayTime: 100 msac [Muttiplierv2] [TypeConversion]
Sample Rate: 43000 Sample Rate: 43000
fractiz - foat Low Shelf High Shelf gain: 0 6B oneChannclOutput: 0 float — fracta2
Data Type: fract32 Data Type: fract32
freq = 200 Hz freq = 3500 Hz Bypass Dels
gain =0 dB gain=0d8 Bypass n Y
Bypass sec
Delaylisect
[DelayMsec]

maxDelayTime: 10 msec
currentDelayTime: 0 msec

The BassTone and TrebleTone modules are SecondOrderFilterSmoothed modules achieve bass and treble boost,
respectively. The bass boost SOF module is set to ShelfLow with a frequency of 200Hz, and the treble boost SOF
module is set to ShelfHigh at a frequency of 3.5 kHz. This way, they can be used to separately control the gains of
the bass and treble frequencies.

BassTone n TrebleTone ﬂ
freq gain freq gain
(Hz) (dE) (Hz) (dE)
200 a 3500 a
o 2 o o 2 o

L= (=] o (=]
o(‘ o 20-| - o/‘ o 20 -
L=} o 15 - - o o 15 -
o o o L=
|-y - 10 -
Q Q
0 3 0 W
1 5 - 1 -5
el o -1 - - o2 o -10
L= (=] o (=]
o(‘ o -15- | - o(‘ a -15
o] a0-1- o o 20
o (=] o L=
a 20 0 20
filterType filterType
ShelfLow W ShelfHigh W

The Volume module is then used to set the volume for the system once bass and treble are set to their desired
levels.

AL

UG WEAVER

Page: 138 of 163

DSP Concepts Audio Weaver Module User’s Guide

The next SecondOrderFilterCascade module is the speaker EQ. It has four separate filter stages. These filters are
set to bypass but they can be configured based on the characteristic of the speaker.

SpeakertQ [= |
freq[1] gain[1] freq[2] gain[2] freq[3] gain[3] freq[4] gain[4]
(Hz) (dB) (Hz) (dE) {Hz) (dB) {Hz) (dB)

250 0 250 0 250 a 250 a
o‘{- c“:\ 20 - - o‘{- c“:\ 20 - - oc(- oo 20-| - oc(- oo 20 -
L=} o 15 - - L=} o 15 - - o o 15 - - o o 15 -
o o o o o o o o
m - - m - - -] - 10 -
- 5 - - 5 -
Q] Q2] Q3] Q4
0 4 0 4 0 0
1 -5 1 5. - 1 -5 1 -5
o 2 o -10 o 2 o =10 - | - o2 o -10 o2 o -10
o/‘ o -15 o/‘ o -15- | - o/‘ o -15 o/‘ o -15
oo °° -20 oo °° G Oo oo =t °° oo =t
a 20 a 20 0 20 0 20
filterType[1] filterType[2] filterType[3] filterType[4]
Bypass + | Bypass + | Bypass + | Bypass v

The final portion of the system implements speaker protection using a limiter.

Limiter
Core

Max Abs

MaxAbs1 LimiterCore1
[MaxAbs] [AGCLimiterCore]
threshold: -3 dB
gain: 0 dB
kneeDepth: 2 dB
ratio: 100
attackTime: 2 mzsec Mult1
decayTime: 20 msec [Multiplierv2]
eneChannelQutput: 0

Delay
WM=ec B

DelayMsec
[DelayMsec]
maxDelayTime: 10 msec
currentDelayTime: 2 meec

In this design, the MaxAbs modules takes the left and right channels, computes the absolute value, and then
chooses the last of the left and right channels. The output of the MaxAbs module represents the loudest channel
in the system. The AGCLimiterCore module then computes a time varying gain which is used to restriction the

AL

UG WEAVER

Page: 139 of 163

DSP Concepts Audio Weaver Module User’s Guide

signal level. The AGCLimiterCore has the standard controls of threshold, attackTime, decayTime, and an optional
soft knee. The output of the AGCLimiterCore module is a time varying gain and this multiplies the original left and
right channel. The DelayMsec module is a “look ahead delay” and allows the limiter to adjust its gain in advance of
sharp signal transients. The look ahead time in this example is set to 2 msec.

In the design above, the left and right channels are limited simultaneously based on the signal level in the louder
channel. The advantage to this design is that it preserves the stereo image of the signal. If the goal is to maximize
the output SPL level then use independent limiters on the left and right channels as shown below:

Limiter
= Max Abs Core
MaxAbs2 LimiterCore2
[MaxAbs] [AGCLimiterCore]
threshold: -3 dB

gain: 0 dB X
kneeDepth: 2 dB

ratio: 100
attackTime: 2 msec Mul2
decayTime: 20 mzec [Mutiplierv2]

oneChannelQutput: 0
. Delay \

Msec [
E DelayMsec2

:| [=
[DelayMsec] . :l

maxDelayTime: 10 msec

currentDelayTime: 2 msec /
Deint?

[Deinterleave] |['|"tfr|'|33 ""31]
Limiter nterleave
[= Max Abs Core
MaxAbs3 LimiterCore3
[MaxAbs] [AGCLimiterCore]
threshold: -3 dB

gain: 0 dB X
kneeDepth: 2 dB

ratio: 100
attackTime: 2 msec Mult3
decayTime: 20 mzec [Mutiplierv2]
oneChannelCutput: 0
Delay
Mzec
DelayMsec3
[DelayMsec]

maxDelayTime: 10 msec
currentDelayTime: 2 msec

Page: 140 of 163

DSP Concepts

Audio Weaver Module User’'s Guide

The AGCLimiterCore module has time constants and it is still possible for the module to miss sudden transients
which could cause the output level to exceed 1.0. Use a SoftClip module as shown below to ensure that the output

never exceeds 1.0.

Limiter
Max Abs Core
MaxAbs1 LimiterCare1
[MaxAbs] [AGCLimiterCore]

threshold: -3 dB

gain: 0 dB

kneeDepth; 2 dB

attackTime: 2 msec
decayTime: 20 msec

ratio: 100

Delay
Msec

DelayMsect
[DelayMsec]

maxDelayTime: 10 msec
currentDelayTime: 2 mzsec

Mutt1
[Multipliery2]
oneChannelQutput: 0

o

SoftClip1
[SoftClip]
threshold: -2 dB

The SoftClip module acts as a point nonlinearity. Signal values below the threshold are unaffected. Values above

the threshold are scaled do and will never exceed 1.0.

AL

UG WEAVER

Page: 141 of 163

DSP Concepts Audio Weaver Module User’s Guide

OVERSAMPLING PEAK DETECTION

A digital audio signal contains samples of the underlying analog wave form. Although the digital samples may form
an accurate representation of the signal, the digital samples may miss some behavior of the analog signal between
samples values. This can usually be ignored but it can be important if the signal is to be output to a DAC. Consider
the waveform shown below.

~

If only the digital sample values are seen, the true peak is missed and it is possible for this signal to clip when

converted to analog. The analog signal is exceeding the allowable range, and can harm the playback system.

In order to prevent this, first see what is happening between samples. This can be accomplished using
oversampling together with a RunningMinMax module. Oversampling is used in the layout below by factors of 2
and 4 using the FIRInterpolator module. The RunningMinMax module is used to compare the sample value in the
original 44.1 kHz waveform against the peak found in the 88.2 kHz and 176.4 kHz oversampled signals.

Missing the peak only occurs if there is high frequency content in the signal; something with cymbals is ideal. In
our test, a piece of processed pop music was played. The peak value in the 44.1 kHz signal is 0.999969 — basically
full scale. The true peak is actually 1.00489, or 0.042 dB. To prevent digital clipping of the analog waveform reduce
the signal level by this amount or set the limiter threshold 0.042 dB lower.

AL

UG WEAVER

Page: 142 of 163

DSP Concepts

Meter1
[Meter]

Audio Weaver Module User’'s Guide

RunningMinMax1

meterType: VUMeterBlock [18]

RunningMinMax1

[Runninghinkax]
statisticsType: Maximum [0]

: Type
i b Convert
S¥S_in
Channels: 2
BlockSize: 32 SYStoFloat

Sample Rate: 42300
Data Type: fract32

0 [TypeConversion]
fractaz —= float

SYS_toFract

statisticsType
Maximum
wvalue reset
0.999959 [l

Convert

SYS_out
Channels: 2
BlockSize: 32

[TypeConversion] sam .
ple Rate: 42000
float —= fractsz Data Type: fract32

Meter2
[Meter]
meterType: VUMeterBlock [18]

[Fe

FIRInterp1
[FIRiInterpolator]
Interpolation factor: 2
Filter length: 64
Latency: 31.5 samples
@ 95000 Hz

RunningMinMax2
[Runninghiniiax]
statisticsType: Maximum [0]

il
il

==

I

Meter3
[Weter]
meterType: VUMeterBlock [18]

F

FIRInterp2
[FIRiInterpolator]

Interpolation factor: 4

Filter length: 64

RunningMinMax3
[Runninghiniiax]
statisticsType: Maximum [0]

Latency: 31.5 samples
@ 192000 Hz

RunningMinMax2

statisticsType
Maximum w
value reset
1.00275 O

RunningMinMax3

statisticsType
Maximum ~
wvalue reset
1.00489 [l

Page: 143 of 163

DSP Concepts Audio Weaver Module User’s Guide

AUTOMATIC GAIN CONTROL

Automatic Gain Controls or AGC are commonly found in volume leveling and microphone applications. The
function of an AGCis to intelligently adjust the level of a signal and manipulate the dynamic range of a signal. This
section provides several different AGC designs that are applicable in a wide range of application.

SIMPLE AGC

The most basic system utilizes the AGCCore module which was introduced in the Dynamics section. This modules
computes the smoothed RMS level of the signal and steers the gain of the signal towards the specified targetLevel.
In this example, the targetLevel is set to -20 dB and use a smoothingTime of 500 msec for slow and steady
adjustment. The ratio is set to 100 indicating that the AGC will adjust the level of the signal so that the output RMS
level is close to -20 dB.

AGC
Core

AGCCorel
[AGCCore]
targetLevel: -20 dB
maxAttenuation: 100 dB
maxGain: 12 dB
ratio: 10 dB/dB
activationThreshold: -50 dB
smoothingTime: 100 msec

enableRecovery: 1
- recoveryRate: 2.4 dBlsec -
. Ype Ype .
comver X comver
SY¥S_in SYS_out

Channels: 2 SYS_toFloat M SYS_toFract Channets:2
BlockSize: 52 [TypeConversion] [Multipliery'2] [TypeConversion] BockSze: 52
Sample Ratz- 45040 fract32 —- float oneChannelOutput: 0 float —= fract32 S Rate- {0

Data Type: fract32 Data Type: fract32

PERCEPTUAL AGC

A natural step is to have the AGC take into account the perceived loudness of the signal. This is easily done by
adding an equalizer in the side chain. A natural choice would be the AudioWeighting module found in the Filters
folder. The ITU468 filter setting is designed to match the loudness perception of the human auditory system.

AL

UG WEAVER

Page: 144 of 163

DSP Concepts

Audio Weaver Module User’'s Guide

Audio AGC
Weighting Core
AudioWeighting1 AGCCore1
[AudioWWeighting] [AGCCore]
weightingType: U468 [5] targetLevel -20 dB

maxAttenuation: 100 dB
maxGain: 12 db
ratio: 10 dB/dB
activationThreshold: -50 dB
smoothingTime: 100 meec
enableRecovery: 1
recoveryRate: 2.4 dB/zec

» " Type
Convert B
S¥S_in
Channels: 2
BlockSize: 32 Sv5_toFloat
Sample Rate: 4800g [TYPeConversion]
Data Type: fractaz "ectd2 —= float

e LI
1 Convert "]

SY'S_out
Muttt SYS_toFract Coanress:2
Wultipliery2] o ; BlockSize: 32
e [MypeConversion] .o pate: 48000

oneChannelCutput: 0 float —= fract3z Data Type: fract32

The AudioWeighting module can also do standard weightings like A-weighting, C-weighting, etc.

TWO STAGE AGC

The AGCCore module is designed to operate slowly on audio signals; it is analogous to turning the volume setting
on the sound system. It works well over long periods of time but over shorter intervals it may let some loud peaks
through. To prevent this reduce the smoothingTime of the AGCCore but this is not a good solution since artifacts

will be heard.

A better solution is to add a second stage of processing — a limiter — with a faster time constant. The limiter is
configured to have a threshold of -15 dB and a ratio of 2. The time constants are faster with an attackTime of 30
msec and a release time of 200 msec. When there is a sudden loud peak the limiter kicks in until the AGC has had
time to make gross level changes.

: Type
Convert H
S¥S3_in
Channels: 2

BlockSize: 32 SYS_toFloat

[TypeConversion]
Sample Rate: 43000
Data Type: fract32 G = Woat

Limiter
Max Abs Core
Maxfibs1 LimiterCore1
[MaxAbs] [AGCLimiterCore]
threshold: -15 dB
gain: 0 dB
kneeDepth: 2 dB Type
attackTime: 30 msec SYS_out
decayTime: 200 msec els:
AGCPerceptual i Muk1 SYS_toFract B?::F;;l:' 322
[Subsystem] [WMutiplieryz]

[TypeConversion]
Sample Rate: 43000
oneChannelQutput: 0 float — fract32 Data Type: fract32

AL

UG WEAVER

Page: 145 of 163

DSP Concepts Audio Weaver Module User’s Guide

|THREE STAGE AGC

The limiter in the two stage design catches most peaks. The AGCCore module can add gain to the signal and when
a loud passage follows the signal level after the AGCLimiter core may still exceed 0 dB and clip. To prevent this, add

a final fast limiter stage and a soft clipper. These two modules only act on the sudden peaks and prevent clipping
of the output.

Limiter

Max Abs Core

MaxAbsi LimiterCore1

[MaxAbs] [AGCLimterCore]
. Type threshold: -3 dB
_In kneeDepth: 2 dB T
ype m
B?ﬂ"::;:ljszz SVE_toFioat ACCPerceptual SiowLmiter T 100 /6 convert” % |
gy ocksze 32 rypeConversn) attackTifie. 5 msec 5vS_out
ample Rate: Pl decayTinle: 20 msec _ Channels: 2
Data Type: fract32 Wt SoftClipt SY5_toFract s
Delay -y BlockSize: 32
m = [Muttipliery2] [SoftClip] [TypeConversion]
see ChannelOutput: 0 threshold. -4 dB fioat —» fract3z SomPle Rate: 43000
pae’ P Data Type: fract32

DelayMsec!
[DelayMsec]
maxDelayTime: 10 msec
currentDelayTime: 2 msec

MULTIBAND AGC

All of the AGCs thus far are single band and operate on the entire signal at each stage. This can lead to pumping in
which a loud low frequency signal (like a drum beat) can cause the entire signal to reduce in level. Instead, it is
better to treat the low and high frequencies separately especially since there is so much energy in the low
frequency. This brings us to a multiband approach in which the signal is split into two components using a
crossover and treat the high and low frequencies individually.

The three stage AGC above will be used as a starting point. For the multiband approach, the Limiter_Slow
subsystem is capable of operating in two bands. The crossover module and two separate limiters are shown below.
The crossover frequency is set to 200 Hz which does a good job separating out drum beats. The limiters are tuned
so that the one operating on low frequencies has slower time constants then the one at higher frequencies.

AL

UG WEAVER

Page: 146 of 163

DSP Concepts Audio Weaver Module User’s Guide

Limiter
Core

Max Abs

MaxAbs1 LimiterCore1
[MaxAbs] [AGCLimiterCore]
threshold: -15 dB
oo gain: 0 dB
— B kneeDepth: 2 dB
T ratio: 2
W1 attackTime: 30 msec
[Marker] decayTime: 200 msec

Mult1
[Muttipliery2]
oneChannelQutput: 0

sao—)

in] I

Limiter
CrossoverFitter1 Max Abs Core Add1
[CrossoverFiter] [Adder]

Linkwitz-Riley Znd MaxAbsZ LimiterCore2 oneChannelOutput: 0

0 ->200 [MaxAbs] [AGCLimiterCore]
200 -= SRiZ threshold: 15 dB
J u gain: 0 dB
— [kneeDepth: 2 dB
Foud ratio: 2
Mz attackTime: 10 msec
[Marker] decayTime: 60 msec

Mult2
[Muttipliery2]
oneChannelOutput: 0

DISCRETE DYNAMICS PROCESSORS

So far, dynamics processors have been built using several “core” modules: AGCLimiterCore, AGCCompressorCore,
and DownwardExpanderCore. For more control, it is possible to build these “core” modules out of several discrete
modules. We’ll model the AGCLimiterCore and similar approaches can be used for other modules. The block
diagram is shown below:

10nan
LI

Attack Twio Pisce, WeterT
Max Abs. Aelease Db20 ntorp o
meterType: VUlleterBlock [18]
MaxAbs1 AGCATiackRekase! D201 TwoPieceiierpv2]
[MaxAbs] [AGCAttackRelease] [Db20] [TwoPieceinterpvz)
. Type attackTime: 2 msec threshold: -4
- Convert releaseTime: 100 msec useRatios: 0 Type
SV5n siopeL: 1 Undb20 X L % HW
e SV foFloat ks SVS_out
[TypeConversion] [t Channels: 2
Sampe Rate: 42000 [T¥peConversion ratio: 1 sup1 Unabzol WUkt SY5_torract s
Data Type: fracti2 kneeDepth: 0 [Subtract] [Undb20] [Mutiplieri2) ypeConversion] o ARESes 22 o
oneChannelOutput: 0 float —= fractaz ok Rate:
Data Type: fract32
WA W2
[Marker] [Marker]
M3 s
[Marker] [Marker]

The main steps are:

AL

UG WEAVER

Page: 147 of 163

DSP Concepts Audio Weaver Module User’s Guide

As with the limiter module, the Abs or (MaxAbs for stereo) module is used to find the maximum level of
the signal in real-time. This maximum level is fed into the AGCAttackRelease module, which creates an
envelope detector with specified attack and release times, in the same way that the attack and release
times can be set in the limiter module.

The Db20 module converts a linear input to decibels. The gain calculation will be performed in dB units,
and then the Undb20 module will be used to convert back to linear units before the computed gain is
used to modify the audio.

The TwoPiecelnterp module applies a piecewise function made of two lines with different slopes,
connected by a smoothing polynomial (the knee). With a slope of 1 below the threshold and less than 1
above it, this will allow the system to reduce the level of the signal once it crosses the threshold, just like
the limiter module.

This computed value is subtracted from the original to produce the correct gain (this may sound
counterintuitive, but remember that as the level increases, a larger amount must be subtracted from the
gain to produce a limiting effect).

Finally, the computed gain in dB must be converted back to linear units with the Undb20 module and fed
into the AGCMultiplier module.

The modules used are:

iy

Rilazsa AGCAttackRel Creates envelope detector with specified
ackRelease
AGC Attack attack and release times
Release
Db20
dEz0 . .
Converts from linear units to dB
dB20
e i
e TwoPiecelnterp Applies two-piece piecewise function
Intep (V2)

Applies function from specified table

Tablelnter
Table P interpolation
Interpolation
Dynamically determines a gain based on
I
Subtract a piecewise function in order to limit a
Subtract signal

Page: 148 of 163

DSP Concepts Audio Weaver Module User’s Guide

Undb20 Converts from dB to linear units

undB20

With the TwoPiecelnterp module specify the slow of the gain curve above and below the threshold. One simple
change can expand the functionality even further. Using a Tablelnterp module instead of the TwoPiecelnterp
allows the user to visually map out exactly the desired behavior:

1 Db20 I— /\A gy

Tableinterp1

[Tableinterp]
Cubic

4 put of 8 points

Db201
[Dbz20]

Undb20 Br—

Sub1 Undb201
[Subtract] [Undb20]

M1 W2
[Marker] [Marker]

Use the Tablelnterp module to “draw” the input / output gain curve as shown below:

AL

UG WEAVER

Page: 149 of 163

DSP Concepts Audio Weaver Module User’s Guide

Tablelnterp1 n
2 Interpolation method
Cubic W
Snap grid
[“]Enable %
1

-10

[C1Enable ¥

-204 1

Hide f Show
-30 [Ireint coordinates
[“ILine slopes
40 Axis grid

=l ! T T T Show

&

4 Reset points to range

This allows for the building of highly custom dynamics processors with designed behaviors such as expansion,
compression, and limiting occurring over different gain ranges.

COMPUTATIONALLY EFFICIENT DYNAMICS PROCESSORS

With the exception of the AGCCore module, the rest of the dynamics processors operate on a sample-by-sample
basis and require complex mathematical calculations (dB, undB, etc.). Dynamics processors can easily consume a
large amount of processing, but Audio Weaver allows for a much more efficient variation. This general technique
can be used to improve the efficiency of many types of algorithms.

The main problem with the dynamics processors is that the gain calculation occurs every sample. If the time
constants are on the order of several milliseconds then there is really no need to update the gains this quickly.
Instead, it is possible to perform the gain calculation at a decimated rate and this is achieved using the
SubblockStatistics module.

The decimation factor is specified on the module properties as the subblockSize argument:

Module: SubblockStatistics

Variables | Arguments | Properties | Build
Marme Value
subblockSize 8

AL

UG WEAVER

Page: 150 of 163

DSP Concepts Audio Weaver Module User’s Guide

The decimation factor must be chosen so that it evenly divides the input blockSize. Next, specify on the inspector
exactly which statistic is computed per subblock. The choice mirrors the ones available in the
BlockStatisticsModule.

SubblockStatisti... Bl

statisticsType

Al et

SubblockStatistics1
[SubblockStatistics]

Maximum W

Maximurm
subblockSize: 8 |Minimum
ﬁ‘aticﬂype: Maximum

-

Mean
32 n|
48000 Hz RMS S
float StdDev 000
float,
Var
| ; AvgEnergy J
™ 5um
Squaredsum
[Marker]

For a limiter, choose the MaxAbs statistic. Suppose that the input blockSize is 32 samples and the decimation

factor is 8. The output blockSize will then be 4 samples and each sample will contain the MaxAbs value of the

corresponding set of 8 input samples. A limiter built using the SubblockStatistics module is shown below. The

arrangement is more efficient since the limiter is only doing 1/8 as much work as before. The Multiplier module is

no longer being used. The Multiplier module requires that the blockSizes of the gain and signal pins be the same.

Instead, the ScalerV2 module is used which can accept subsampled gain values.

-

12 -
Limiter w32 [Meter]
— ﬂﬂl — 323';)3;”1 —F Coe P 1 48000 Hz ype: VUMeterBlock [18]
| 8 2 float
3000 Hz
48000 Hz | gypblockStatistics LimiterCore 1 fhaart
o (L= [SubblockStatistics] [AGCLimiterCore] e e o

A Type subblockSize: 8 threshold: -20 dB Type N
{ 48000 H 48000 Hz = 48000 H: {

H "r_ :,acﬂzz r (:r.lrl\.'el'tl:> statkticsType: Maximum [0] gain: 0 dB float : Cunvartl: :,acﬂzz {II
S¥S_in kneeDepth: 2 dB SY'S_out
Bcl::;;:f 322 SY35_toFloat i vair 4 32 Scalert SY5_toFract Bc]::;;:l: 322

- [TypeConversion] B attackTime: 20 m 45000 Hz [Scalerv2] [TypeConversion] -
Sample Rate: 42000 fract32 —s float t decayTime: 100 ™ fiost ain- 0 dB float > fract3? Sample Rate: 42000
Data Type: fractd2 ~ gain: N Data Type: fractd2
e | smoothingTime: 10 msec
isDB:

£

M1

=

[Marker]

If the signal can be decimated for the limiter even further, considering using a BlockStatistics module instead of a

SubblocksStatistics. This is shown below and the gain calculations are done with a blockSize of 1 sample. These

signals are referred to as control signals and are described in the Logic section.

AL

UG WEAVER

Page: 151 of 163

DSP Concepts Audio Weaver Module User’s Guide

Meter1
| e b Lmiter %2 [Meter]
I Hoat Core | 48000 Hz ype: VUMeterBlock [18]
ez 1x1 float
45000 Hz BlockStatistics1 LimiterCore1 e
float
— fleat [BlockStatistics] [AGCLimiterCare] L — —
HW Em He = Type [statisticsType: MaxAbs [2] threshold: -20 dB ——F I 45000 He ——t Type [48000 Hz)(HW
_ fractzz | Convert gain: 0 dB float Convert | ¢apeaz
S¥S_in kneeDepth: 2 dif SYS_out
Chaness.2 SY5_toFloat iz ratio: & 5 Scalert 5YS_toFract Channets:2
BlockSize: Be [TypeConversion] o attackTime: £ 45000 He [Scalery?] [TypeConversion] Hodksze: B
: float . .
Sample Rate: 43000 decayTime: 1 float P ot g Sample Rate: 43000

Data Type: fract32

fractd2 —= float | Data Type: fract32

O smoothingTime: 10 msec
Iz i=DB: 1

M
[Marker]

L)

A WEAVER Page: 152 of 163

DSP Concepts Audio Weaver Module User’s Guide

MICROPHONE DE-ESSING

A common complaint of microphone recordings is that the sibilant sounds (“s”, “z”, and “sh”) are too prominent
and harsh. This is because the microphone is very close to the talker and picks up more of these high frequencies.
The problem area is in the range from 4 kHz to 10 kHz and depends on the talker. A fairly common frequency to
concentrate on is around 8 kHz. An overview of the problem and approaches can be found at
http://en.wikipedia.org/wiki/De-essing.

BROADBAND DE-ESSING

In the broadband approach the entire signal level is reduced when harsh high frequencies are detected. A standard
AGCLimiterCore can be used with a sidechain EQ which accentuates the 8 kHz problem frequencies.

Limiter
m = Max Abs Core

SOF1 MaxAbs1 LimiterCore1
[SecondOrderFilter]| ik bs] [AGCLimiterCore]
Peak EQ threshold: -10 dB
freq = 8000 Hz gain: 0 dB
- Type gain = 8 dB kneeDepth: 2 dB Type -
Cosntﬁert B Q=2 ratio: 4 E Cuﬁgen F Q—IHW
SVEn attackTime: 20 msec SYS_out
5 decayTime: 100 msec -
B?;;’;;?: ;2 SYS_toFloat y Matt1 SYS_toFract B?;:;;;f ;2
Sample Rats: 4g000 [TYPEConversion] N7 I Muliplerv/2) [¥peConversion] sampie Rate: 45000
Data Type: fract32 "2 = g > [[Pt TR RSl Data Type: fract32
M1 {3
[Marker] [Marker]

The downside of this approach is that when sibilants are detected the gain of the entire signal is reduced; this is
not ideal.

SPLIT BAND DE-ESSING

One improvement is to use a crossover and treat sibilant and non-sibilant frequencies separately. A 2-way
crossover with a cutoff frequency of 6 kHz is used. A limiter then acts on the high frequency signals and reduces
the gain, if necessary; the low frequencies are untouched.

AL

UG WEAVER

Page: 153 of 163

http://en.wikipedia.org/wiki/De-essing

DSP Concepts Audio Weaver Module User’s Guide

[y
pp—— M3
HW n?;’fin [Marker]
SYSn
Channels: 4
BlockSize: 12 E¥a-tofiast
Sample Rate: 43000 [T¥PECOnVErsion] k
Data Type: fracza Ta0t32 —= foat B Type HW
Convert -
SYS_out
- Channels: 4
Crossovarfifer] Limter Addl SVE_foFract s sl
[CrossoverFiter] 2 Max Abs - [Adder] MypeConversion] ¢ BOTres 20
Linkwitz-Riley 2nd ore oneChanneiOutput: 0 float —= fractzz TP Rale
e Data Type: fract32
6000 -» SR2 SOF1 MaxAbs 1 LimiterCore1
{SecondOrderFiterSmoothed] [MaxAbs] [AGCLimiterCore]
Peak EQ threshold: -10 4B
freq = 8000 Hz gain: 0 4B
gain = & 9B kneeDepth: 2 4B
a-2 ratio: 4
attackTime: 20 msec
decayTime: 100 msec
Mutt1
e e [Muttiplier2]
S oneChannelOutput; 0
M1 Wz
Marker] MMarker]

DYNAMIC EQUALIZING DE-ESSING

It is still possible to do better. In the Split Band De-essing all signals above 6 kHz are reduced in gain if sibilants are
detecting. The design below is even more precise. A bandpass filter around 8 kHz detects sibilants.

BPF
10

-10

-15

dB

-20
-25 \
-30

-35 ‘

405 3 4 5
10 10 10 10
Frequency (Hz)

The output of the bandpass filter drives a limiter core and this in turn reduces the gain of a controllable second
order peak filter. This limits the gain reduction to the range of frequencies from 6 to 10 kHz. The entire system is
shown below:

AL

UG WEAVER

Page: 154 of 163

DSP Concepts

Audio Weaver Module User’'s Guide

i } Limiter
Max Abs Core Db20
SOF1 MaxAbs1 LimiterCore1 Db201
[SecondOrderFiterSmoothed] [MaxAbs] [AGCLimiterCore] [Db20]
Peak EQ threshold: -10 dB
freq = 38000 Hz gain: 0 dB
Type gain =& dB kneeDepth: 2 dB
covart a-2 rao: ¢
SYS_in attackTime: 20 msec
Channels: 2 decayTime: 100 msec
BlockSize: 32 SYS—mFIDa.t
Sample Rate: 45000 [YPECONversien] RN
Data Type: fractd? fract32 —= float b: f}'
M1
[Marker] [Marker]

S0F2

gainPin

N

[SOFControl]
Peak EQ
freq = 8000 Hz
gain = from pin
Q=2
smoothingTime: 10 msec

Type
Comer
SYS_out
Channels: 2
SYS_toFract BlockSize: 32
[TypeConversion]

float —= fract3z

Sample Rate: 43000
Data Type: fract32

L)

AUCHD WEAVER

Page: 155 of 163

DSP Concepts Audio Weaver Module User’s Guide

MICROPHONE DE-POPPER

Another problem with microphones is that if the talker is too close then every plosive (a consonant with a puff of
air like a “p”) causes a mini explosion. This also occurs with fixed microphones if the speaker bangs their hand on
the podium. The solution to this problem is a “De-Popper” which is another form of dynamics processor. Instead of
focusing on high frequencies like the De-Esser the focus will be on low frequencies below 150 Hz. The derivative of
low frequency energy (i.e., changes in energy over time) engages the limiter only for positive slopes. The block
diagram is shown below:

RMS —* Derivative FT— % 7‘
RMS1 Derivative1 ClipAsym1 ‘
[RMS] [Derivative] [ClipAsym] ‘
smoothingTime: 40 msec gain: 1 linear Clip Upper: 1
I i Clip Lower: 0 L
P
Type w3 Scaler!
= Convert [Marker] [Scalery2]
s gain: 0 fnear
S¥'S_toFloat smoothingTime: 10 msec
Sarglpt:sﬁf: 4332000 [TypeConversion] isDB: 0 cm:n
Data Type: fractzz Tacta2 —> float 5VS_out
Add1 S¥5_toFract Channets: 2
[Adder] [TypeConversion] TRICkSEE 12
P Sample Rate: 48000

oneChannelOutput: 0 float —= fract32
CrossoverFitter1

[CrossoverFiter]
Linkwitz-Riley 2nd
0-= 150
150 -» SRI2

Data Type: fraci32

The RMS module computes the energy over a 40 msec running window and the derivative module looks for
changes in energy. Constant low frequency energy doesn’t trigger the limiter at all.

Page: 156 of 163

DSP Concepts Audio Weaver Module User’s Guide

FEEDBACK EXAMPLE

Below is an example of a system using feedback. This system creates a series of echoes by adding to the audio a
delayed, scaled down copy of itself. The wire from the output of the ScalerV2 module to the top input of the Adder
module is feedback:

comver

comvert”

SY5_in SYS_qut
BCI;;?;;': 322 SYS_toFloat Add1 SYS_toFract BCI;CT;;': 322
Sample Rate: 48000 [YPeConversion] [Adder] [TypeConversion] . ooie pate: 48000
Data Type: fract32 fractd2 —= float oneChannelOutput: 0 float —= fract32 Data Type: fract32
Dela R
e Audio Weaver Error
Scaler! DelayMsec
[Scalerv2] [DelayMsec] ‘Routing error. Mo module can fire. Are you missing feedback?!'
gain: -4 dB maxDelayTime: 10 msec
smocthingTime: 10 megec currentDelayTime: 0 meec
isDB: 1

Build and run the system to see the build error shown above. The problem occurs because Audio Weaver is unable
to determine that there is feedback in the system; this must be manually indicated.

Right-click on the wire at the output of the ScalerV2 module, select “Feedback,” and then specify the feedback
properties. In this case, the feedback wire is stereo and has the properties shown below.

)] Feedback Wire Properties - O
Changes do not take effect until the propagate changes bution is activated
blockSize |Inherit from first input pin v Inherit
numChannels Inherit from first input pin w Inherit
sampleRate Inherit from first input pin w Inherit
dataType Specify value W float
isComplex Inherit from first input pin w Inherit
inttialValues real: 0 imag: 0
clockDivider 1
Cancel 0K

AL

UG WEAVER

Page: 157 of 163

DSP Concepts Audio Weaver Module User’s Guide

The system can then be redrawn and the feedback wire will be marked in blue.

comert” comert”

SVEn SVE_out
Channels: 2 Channels: 2
BlockSize: 32 e m i 4udd Y5 -Aofract BlockSize: 32

[Adder] [TypeConversion] ool pate: 43000

. Conversion]
Sample Rate: 45000 [TYPE!
oneChannelOutput: 0 float —= fract32 Data Type: fract32

Data Type: fract32 THCiY > ot

Delay
A Msec
Scalert DelayMsect
[Scalervz] [DelayMsec]
gain: -4 dB maxDelayTime: 1000 msec
smoothingTime: 10 msec currentDelayTime: 500 meec
isDB: 1

A simple addition of an ImpulseMsecSource and Interleave module to this system allows for an excellent
demonstration of the echo property caused by the feedback:

W Typs
E:om.'erll>
SYS_in
Channels: 2
BlockSize: 32 SYS_toFloat
Sample Rate: 43000 [TYpeConversion]
Date Type: fractap 1act32 —> float

el]
Convert
SYS_out
Channels: 2
SYﬁ—'UFrm BlockSize: 32
F;IVPT “}”{”;';;] Sample Rate: 43000
oal —> Ira Data Typs: fract32

Add1
[Adder]
oneChannelOutput: 0

Multiplexor1
[Multiplexoryv2]
index: 1
smoothingTime: 10 msec
fadeTime: 10 msec

Delay
B Msec

Scalerl DelayMsec!
[Scalerv2] [DelayMsec]
gain: -3 dB maxDelayTime: 1000 msec
smoothingTime: 10 msec currentDelayTime: 100 msec
isDB: 1

ImpulseMsecSourcel
[ImpulseMsecSource]
periodisec: 1000 msec Interleave1

[interieave]

With the impulse set to a period of 1000 msec, the delay module set to 100 msec, and the first scalar module set
to -3dB (the second scalar should be set around -10dB to lower the level — remember, sources are very loud), the
echo should be very clearly audible. Those settings can be changed to explore their effects on the echo, but be
warned that if the first scalar’s gain surpasses 0dB, it will cause instability as it will increase the level of the signal
that eventually feeds back into itself! A gain lower than 0dB will cause the echoes to gradually fade. The
multiplexor can be used to switch between the impulse source and sample audio.

A more sophisticated example of feedback can be seen in the Audio Weaver Reverb example, found with the path:
Examples/Designer/Float/reverb.awd:

L)

AT WEAVER Page: 158 of 163

DSP Concepts

Audio Weaver Module User’'s Guide

I~ —
W Type 1 h
Convert P -
SYS in —
Channess2 TypeConversion1 [
San?h:::faltz:: 3421 00 [TypeConversion] r.1u|tip-lexurFade1
0 tpT . f ct3? fract3? —= float [MultiplexorFade]
o L index: 1

Revert
[Subsystem]

ot PR _t_]
Convert B
SYS_out
- Channels: 2
TypeConversionz BlockSize: 32
[TypeConversion]

Sample Rate: 44100

Tioal -7 fartid Data Type: fract32

smoothingTime: 10 msec

Double-click on the Reverb subsystem to open it and scroll to the right to see a very large (8-channel) blue
feedback wire used to create the semi-random echoes that constitute the reverberation:

Add1
[Adder]
oneChannel0utput: 1

Routeri
[Router}
11 = pin[1].chan[1]
in[2].chan]2]
in[2].chan(3]
in[2].chan]4]

o oo o

? R
out8] = pin[2].chan[B]
out[7] = pin[2].chan[7]
out[8] = pin[2].chan[a]

ScatterMixer
[Mixer]

DelayRandom
[Subsystem]

LP1

freq =3000 Hz

[SecondOrderFiterSmoothed]
Butterworth LPF - 1st order gain: 0.8456 line:

SMo0]

FBGain1
[Scaler]

4 Routerd
i [Router]
Wz out[1] = pin[1].chan(1]

[Marker]

L)

UG WEAVER

Page: 159 of 163

DSP Concepts Audio Weaver Module User’s Guide

MODULE INDEX

Abs 19, 100, 147

ClipAsym 61, 100, 154
Adder 61, 93

ClipIndicator 129
AGCAttackRelease 147

ComplexAngle 59
AGCCore 143, 149

ComplexConjugate 59
AGClLimiterCore 20, 140, 145, 152, 153

ComplexMagnitude 60
AGCMultiplier 22, 147

ComplexMagSquared 60

AudioWeighting 144
ComplexModulate 60

Biquad 36

ComplexMultiplier 60
BiquadCascade 36

ComplexToPolar 60
BiquadCascadeHP 38

ComplexToReallmag 55
BiquadNCascade 36, 37
Crossover 29, 39, 146, 152, 154

BiquadSmoothed 36
Db20 147, 153

BiqudSmoothedHP 38
DCSource 84, 132

BlockConcatenate 60
Deinterleave 60, 94, 121, 137

BlockDelay 60
DelayMsec 140

BlockExtract 60, 113
Demultiplexor 61

BlockFlip 60
Derivative 154

BlockStatistics 11, 151
Divide 94

Booleaninvert 89
Downsampler 110

BooleanSource 89
EmphasisFilter 31

ButterworthFilter 29, 30, 40, 53
Fft 56

ButterworthFilterHP 38
FIR7, 36

Cfft 56
FIRDecimator 110

AL

AUCHD WEAVER

Page: 160 of 163

DSP Concepts

FIRInterpolator 110, 142
GraphicEQ 32
GraphicEQBand 32
GraphicEQBandHP 38

Ifft 56

ImpulseMsecSource 132, 156

ImpulseSource 132
Interleave 61, 121, 156
Invert 61, 81

LogicAll 89

LogicAny 89
LogicBinaryOp 89
LogicCompare 90
LogicConstCompare 90
Marker 117

MaxAbs 19, 22, 140, 147
Meter 128

Mixer 61

MixerDense 61
Multiplexor 61, 116
MultiplexorFade 117
MultiplexorFadeControl 90
Multiplier 94

Multiplier 150
MuteNSmoothed 82

MuteSmoothed 61, 81

Audio Weaver Module User’'s Guide

NullSink 123, 126
Oscillator 133
OverlapAdd 58
ParamGet 92

ParamSet 34, 92
PeriodicSource 132
PinkFilter 32

PinkNoise 133
PolarToComplex 60
Polynomial 100
PulseGen 132

Randi 132
ReallmagToComplex 55
Rebuffer 58, 111, 113, 128
Reciprocal 94
RepWinOverlap 59
RMS 90, 154

Router 122
RouterSmoothed 122, 125
Sawtooth 132
SbAttackRelease 76
SbComplexFIR 77
SbDerivative 77
SbNLMS 77

SbRMS 77

SbSmooth 77

Page: 161 of 163

DSP Concepts

SbSOF 77

SbSplitter 77

ScaleOffset 61, 81

Scaler 61, 80

ScalerControl 61, 81

ScalerDB 61, 80
ScalerDBControl 61, 81, 84
ScalerDBSmoothed 80

ScalerN 80
ScalerNDBSmoothed 80
ScalerNSmoothed 80
ScalerSmoothed 12, 80
ScalerV2 150
SecondOrderFilterCascade 139
SecondOrderFilterHP 39
SecondOrderFilterSmoothed 42, 152
SecondOrderFilterSmoothedCascade 53
ShiftSamples 61

SineGen 131
SineSmoothedGen 131

Sink 87, 126

SOFCascadeHP 39

SOFControl 84, 153

SOFControlHP 38

SoftClip 100, 145
SoloMute 82

Source 132

Square 100
SubblockStatistics 149
Subtract 61, 94, 148
SumDiff 61, 137
Tablelnterp 12, 34, 84, 100, 148
ThreeBandToneControl 32
TwoPiecelnterp 100, 147
Undb20 147

Upsampler 109
VolumeControl 34
VolumeControlHP 39
WeightingFilter 28
WhiteNoise 61, 133
Window 58

WindowAlias 58
WindowOverlap 58
WOLAAnNalysis 63
WOLASynthesis 63
XoverNway 39, 146, 152, 154

ZeroPad 59

Audio Weaver Module User’'s Guide

AL

UG WEAVER

Page: 162 of 163

DSP Concepts Audio Weaver Module User’s Guide

Page: 163 of 163

	Introduction
	How to use this guide
	Other Audio Weaver Documents
	Module Library Organization
	Module Browser overview

	Basic Module Concepts
	Viewing Module Properties
	Tunable Variables and Inspectors
	Step Values and Fine Controls
	Viewing Module Variables on Canvas
	Module Status
	Wires and Control Signals
	Pin propagation
	Feedback Wires

	Block Size
	Smoothed modules

	Modules in Browser Order
	Annotation
	Documenting Layouts

	Delays
	Allpass Delays
	Modulated Delays
	Delay Taps
	Low memory delays
	Table of Delay Modules

	DSP Concepts IP
	Long FIR Filter
	WOLA Forward Filterbank (Analysis)
	WOLA Inverse Filterbank (Synthesis)

	Dynamics
	Compressors
	Envelope Modulation
	Limiters
	Downward Expander
	AGC Core
	Table of Dynamics Modules

	Filters
	Adaptive (LMS)
	Filters with Calculated Coeffs
	Allpass Pair
	Audio Weighting Filters
	Crossover Filter
	Emphasis Filter
	Graphic EQs
	Hilbert
	Pink Filter
	Three Band Tone Control

	Controllable Filters
	First Order Filter Control
	LPF Control
	Second Order Filter Control

	Filters with Raw Coeffs
	High Precision Filters
	Common Filter Modules
	ButterworthFilter
	SecondOrderFilterSmoothed
	Second Order Filter Smoothed Cascade

	Table of Filter Modules

	Frequency Domain
	Frequency Domain Modules
	Complex Data Support
	Transform Modules
	Windowing
	Complex Math

	FilterBank Processing
	Introduction
	Using WOLA and sub-band Blocks
	Theory
	Aliasing Performance of the WOLA Filterbanks
	Subband Signal Manipulation
	Synthesis Filterbank

	Gains
	Mutes
	Crossfader
	General Purpose Scalers
	Table of Mute Modules
	Table of Gain Modules

	Logic
	Control Signals and Boolean Logic
	Boolean Signals
	ParamSet and ParamGet

	Math
	Advanced Math
	Basic Math
	DB Conversion
	Lookup Tables
	Nonlinearities
	Trig

	Misc
	Biquad Loading
	Block Counter
	Coeff Table
	Counter
	Cycle Burner
	FIRLoading
	GPIO
	Math Exception
	Measurement
	Param Get
	Param Set
	Safety Clip
	Sample Rate
	Set Wire Properties
	Status Set
	Update Sample Rate

	Mixers
	MixerV3
	SMixer2x1
	Wet Dry

	Multirate
	Multirate Processing
	Single block time processing
	Multiple block time processing

	Signal Management
	Signal Routing
	Multiplexors
	Marker
	Interleave/Deinterleave
	Router

	Sinks
	Null Sink
	Sink
	Meter

	Spatial
	Statistics
	Subsystem
	Sources

	Larger Examples
	Speaker Spreader
	Loudspeaker Processing - Stereo
	Oversampling Peak Detection
	Automatic Gain Control
	Simple AGC
	Perceptual AGC
	Two Stage AGC
	Three Stage AGC
	Multiband AGC
	Discrete Dynamics Processors
	Computationally Efficient Dynamics Processors

	Microphone De-essing
	Broadband De-Essing
	Split Band De-Essing
	Dynamic Equalizing De-Essing

	Microphone De-Popper
	Feedback Example

	Module Index

